Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 28;31(18):29536-29557.
doi: 10.1364/OE.497398.

Theoretical limit and framework of dynamic modulation in spoof surface plasmon polariton interconnects

Free article

Theoretical limit and framework of dynamic modulation in spoof surface plasmon polariton interconnects

Suzit Hasan Nayem et al. Opt Express. .
Free article

Abstract

Spoof-surface-plasmon-polariton (SSPP) interconnects are potential candidates for next-generation interconnects to satisfy the growing demand for high-speed, large-volume data transfer in chip-to-chip and inter-chip communication networks. As in any interconnect, the viability and efficiency of the modulation technique employed will play a crucial role in the effective utilization of SSPP interconnects. In light of the lack of a comprehensive platform for the performance analysis of SSPP signal modulation, this work presents a theoretical framework that contributes to the following: 1) predictions of the maximum attainable modulation speed, limited by geometric dispersion in SSPP waveguide, 2) quantification of the fundamental trade-off relation between modulation speed and energy-efficiency for an arbitrary design of SSPP structure, 3) extension of the analysis over a broad category of SSPP modulation technique. In conjunction, a novel SSPP signal modulation technique is introduced, involving controlled alteration of the resonant condition of the SSPP interconnect using a variable resistor. Analyzing a sample SSPP waveguide with a 7 GHz cut-off frequency, the study identifies a potential ∼28% change in its transmission-band by varying the implanted resistor from 5kΩ to 5Ω, a range of values practically attainable with gate-controlled, state-of-the-art submicron scale field-effect transistors. The assertions of the theoretical model have been independently validated by finite-element method based numerical simulations, which show that the underlying concept can be utilized to realize the digital modulation scheme of the amplitude shift keying. For a millimeter-scale SSPP channel having 2.75 GHz transmission bandwidth, up to 300 Mbps modulation speed with nominal power loss is achieved in a standard, thermal-noise limited communication system. By scaling the interconnect to micrometer dimensions, the speed can be augmented up to 10 Gbps for data transfer over 100 mm distance with ≥80% energy efficiency. Essentially, the presented theory is the first of its kind that provides the foundational design guideline for designing and optimizing diverse range of SSPP modulators.

PubMed Disclaimer

Similar articles

LinkOut - more resources