Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;10(31):e2304518.
doi: 10.1002/advs.202304518. Epub 2023 Sep 15.

Visualizing Chain Growth of Polytelluoxane via Polymerization Induced Emission

Affiliations

Visualizing Chain Growth of Polytelluoxane via Polymerization Induced Emission

Chengfei Liu et al. Adv Sci (Weinh). 2023 Nov.

Abstract

Visualizing polymer chain growth is always a hot topic for tailoring structure-function properties in polymer chemistry. However, current characterization methods are limited in their ability to differentiate the degree of polymerization in real-time without isolating the samples from the reaction vessel, let alone to detect insoluble polymers. Herein, a reliable relationship is established between polymer chain growth and fluorescence properties through polymerization induced emission. (TPE-C2)2 -Te is used to realize in situ oxidative polymerization, leading to the aggregation of fluorophores. The relationship between polymerization degree of growing polytelluoxane (PTeO) and fluorescence intensity is constructed, enabling real-time monitoring of the polymerization reaction. More importantly, this novel method can be further applied to the observation of the polymerization process for growing insoluble polymer via surface polymerization. Therefore, the development of visualization technology will open a new avenue for visualizing polymer chain growth in real-time, regardless of polymer solubility.

Keywords: oxidative polymerization; polymerization induced emission; polytelluoxane; visual monitoring.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Cartoon representations of visualization of polymer chain growth via oxidative polymerization induced emission. a) Oxidative polymerization of Te‐containing molecules: (TPE‐C2)2‐Te, (TPE‐C6)2‐Te and (TPE‐C12)2‐Te, respectively. b) Schematic illustration of oxidative polymerization process for (TPE‐C2)2‐Te and its change of fluorescence color.
Figure 1
Figure 1
Confirmation of the formation of TPE‐PTeOC2. a) The polymerization process of TPE‐PTeOC2. b) 1H NMR characterization of TPE‐PTeOC2 obtained from (TPE‐C2)2‐Te incubated with H2O2 for 12 h. c) GPC analysis of the TPE‐PTeOC2 obtained from (TPE‐C2)2‐Te incubated with H2O2 at different time point. d) Changes in Te 3d binding energy demonstrating the oxidative polymerization.
Figure 2
Figure 2
Fluorescence characterization of oxidative polymerization. Fluorescent spectra of (TPE‐C2)2‐Te (5 mm) a), (TPE‐C6)2‐Te b), and (TPE‐C12)2‐Te c) treated with H2O2 at different time points (𝜆 ex = 350 nm) in DMF. Inset: the plot of I/I 0 at different time points. I 0 = Intensity at 0 h. d) The plot of ΦAF at different time points. e) LSCM images of (TPE‐C2)2‐Te, (TPE‐C6)2‐Te, and (TPE‐C12)2‐Te treated with H2O2 at different time points and the cartoon representations of its proposed structural arrangement for TPE‐PTeOC2, TPE‐PTeOC6, and TPE‐PTeOC12.
Figure 3
Figure 3
Relationship between polymer chain growth and visible fluorescence properties. a) The plot of corresponding dependent correlation between molecular weight and fluorescence intensity. b) The table of corresponding dependent correlation between molecular weight and fluorescence intensity. c) Photograph of fluorescence changes with the process of (TPE‐C2)2‐Te, (TPE‐C6)2‐Te, and (TPE‐C12)2‐Te based oxidative polymerization under UV irradiation at 365 nm.
Figure 4
Figure 4
Oxidative polymerization of TPE‐PTeOC2 in surface. a) Schematic illustration of oxidative polymerization in surface on quartz substrates. b) Static water contact angle before (left) and after (right) oxidative polymerization. c) XPS Te 3d spectrum of the SiO2‐TPE‐PTeOC2 surface, the binding energy corresponds to Te (+4). d) ToF‐SIMS map of [M+H]+(C28H24O+) ions on the SiO2‐TPE‐PTeOC2 surface. e) Observed ToF‐SIMS result of the fragment, M 376.16. The observed spectra matched well with the calculated one. f) Photograph of fluorescence changes and mean fluorescence intensity with the process of oxidative polymerization under UV irradiation at 420 nm. (Scale bars: 200 µm).
Figure 5
Figure 5
The depolymerization of TPE‐PTeOC2. a) Schematic diagram of depolymerization process of TPE‐PTeOC2 after addition of aqueous HCl. b) 1H NMR characterization of TPE‐PTeOC2 incubated with aqueous HCl of 0.5 mm for 6 h. c) ESI‐MS characterization of TPE‐PTeOC2 incubated with aqueous HCl. ESI‐MS showing the peak of tellurone as calculated. d) Fluorescence emission spectra of TPE‐PTeOC2 upon adding aqueous HCl. λ ex = 350 nm. Inset: Fluorescent photographs of TPE‐PTeOC2 before and after the addition of aqueous HCl recorded under a handheld UV lamp. e) LSCM images and f) fluorescent photographs of TPE‐PTeOC2 before and after the addition of aqueous HCl.

Similar articles

References

    1. a) Mieras H. J. M. A., Rijn C. F. H. V., Nature 1969, 224, 165;
    2. b) Charlesby A., Nature 1954, 173, 679; - PubMed
    3. c) Gentekos D. T., Sifri R. J., Fors B. P., Nat. Rev. Mater. 2019, 4, 761;
    4. d) McAfee T., Leonardi N., Montgomery R., Siqueira J., Zekoski T., Drenski M. F., Reed W. F., Macromolecules 2016, 49, 7170;
    5. e) Mozharov S., Nordon A., Littlejohn D., Wiles C., Watts P., Dallin P., Girkin J. M., J. Am. Chem. Soc. 2011, 133, 3601; - PubMed
    6. f) Lu J., Xu Z., Fu H., Lin Y., Wang H., Lu H., J. Am. Chem. Soc. 2022, 144, 15709; - PubMed
    7. g) Shi Q. Q., Yin H., Song R. D., Xu J., Tan J. J., Zhou X., Cen J., Deng Z. Y., Tong H. M., Cui C. H., Zhang Y. F., Li X. P., Zhang Z. B., Liu S. Y., Nat. Chem. 2023, 15, 257. - PubMed
    1. a) Li H., Jin B., Wang Y., Deng B., Wang D., Tang B. Z., Adv. Mater. 2023, 35, 2210085; - PubMed
    2. b) Patel K., Chikkali S. H., Sivaram S., Prog. Polym. Sci. 2020, 109, 101290;
    3. c) Baick I. H., Ye Y., Luciani C. V., Ahn Y. G., Song K. H., Choi K. Y., Ind. Eng. Chem. Res. 2013, 52, 17419;
    4. d) Knop K., Hoogenboom R., Fischer D., Schubert U. S., Angew. Chem., Int. Ed. 2010, 49, 6288; - PubMed
    5. e) Wu X., Lin H., Dai F., Hu R., Tang B. Z., CCS Chem 2020, 2, 191;
    6. f) Dai X., Wu Y., Liang Q., Yang J., Huang L., Kong J., Hao J., Adv. Funct. Mater. 2023, 2304415.
    1. a) Deplancke T., Lame O., Rousset F., Seguela R., Vigier G., Macromolecules 2015, 48, 5328;
    2. b) Kida T., Hiejima Y., Nitta K.‐h., Macromolecules 2021, 54, 225.
    1. a) IV A. G., Blum S. A., J. Am. Chem. Soc. 2022, 144, 22416; - PubMed
    2. b) Xia J., Zhao P., Pan S., Xu H., ACS Macro Lett. 2019, 8, 629; - PubMed
    3. c) Song B., Bai T., Liu D., Hu R., Lu D., Qin A., Ling J., Tang B. Z., CCS Chem 2022, 4, 237;
    4. d) Zou C., Wang Q., Si G. F., Chen C. L., Nat. Commun. 2023, 14, 1442. - PMC - PubMed
    1. a) Deng Y., Zhang Q., Qu D. H., Tian H., Feringa B. L., Angew. Chem., Int. Ed. 2022, 61, e202209100; - PMC - PubMed
    2. b) Xu T. Y., Tong F., Xu H., Wang M. Q., Tian H., Qu D. H., J. Am. Chem. Soc. 2022, 144, 6278; - PubMed
    3. c) Miyauchi M., Takashima Y., Yamaguchi H., Harada A., J. Am. Chem. Soc. 2005, 127, 2984; - PubMed
    4. d) Lee D. C., Kensy V. K., Maroon C. R., Long B. K., Boydston A. J., Angew. Chem., Int. Ed. 2019, 131, 5695.

LinkOut - more resources