Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 15:1821:148583.
doi: 10.1016/j.brainres.2023.148583. Epub 2023 Sep 17.

Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways

Affiliations

Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways

Sareh Kazmi et al. Brain Res. .

Abstract

Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.

Keywords: Cognitive impairment; Hindlimb unloading; Microgravity model; Oxidative stress; Sirt1; Transcranial photobiomodulation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; Hologenix Inc. Santa Monica, CA; Vielight, Toronto, Canada; JOOVV Inc, Minneapolis-St. Paul MN; Sunlighten, Kansas City, MO; PBM Healing International, Hong Kong. Consulting; USHIO Corp, Japan; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany; Klox Asia, Guangzhou, China. Stockholding: Niraxx Light Therapeutics, Inc, Irvine CA; JelikaLite Corp, New York NY. The other authors declare no conflicts of interest.

Similar articles

Cited by

Publication types

LinkOut - more resources