Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force
- PMID: 37723268
- DOI: 10.1038/s41587-023-01954-x
Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force
Abstract
Nanopores have recently been used to identify and fingerprint proteins. However, because proteins, unlike DNA, do not have a uniform charge, the electrophoretic force cannot in general be used to translocate or linearize them. Here we show that the introduction of sets of charges in the lumen of the CytK nanopore spaced by ~1 nm creates an electroosmotic flow that induces the unidirectional transport of unstructured natural polypeptides against a strong electrophoretic force. Molecular dynamics simulations indicate that this electroosmotic-dominated force has a strength of ~20 pN at -100 mV, which is similar to the electric force on single-stranded DNA. Unfolded polypeptides produce current signatures as they traverse the nanopore, which may be used to identify proteins. This approach can be used to translocate and stretch proteins for enzymatic and non-enzymatic protein identification and sequencing.
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Similar articles
-
SDS-assisted protein transport through solid-state nanopores.Nanoscale. 2017 Aug 17;9(32):11685-11693. doi: 10.1039/c7nr02450a. Nanoscale. 2017. PMID: 28776058 Free PMC article.
-
Single-File Translocation Dynamics of SDS-Denatured, Whole Proteins through Sub-5 nm Solid-State Nanopores.ACS Nano. 2022 Jul 26;16(7):11405-11414. doi: 10.1021/acsnano.2c05391. Epub 2022 Jul 3. ACS Nano. 2022. PMID: 35785960 Free PMC article.
-
Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.ACS Appl Mater Interfaces. 2016 May 25;8(20):13166-79. doi: 10.1021/acsami.6b03697. Epub 2016 May 16. ACS Appl Mater Interfaces. 2016. PMID: 27159806
-
Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.Biophys J. 2020 Jun 2;118(11):2844-2852. doi: 10.1016/j.bpj.2020.04.011. Epub 2020 Apr 19. Biophys J. 2020. PMID: 32348725 Free PMC article.
-
Macromolecular mechanisms of protein translocation.Protein Pept Lett. 2014 Mar;21(3):209-16. doi: 10.2174/09298665113209990079. Protein Pept Lett. 2014. PMID: 24370256 Free PMC article. Review.
Cited by
-
Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore.Nat Methods. 2024 Apr;21(4):609-618. doi: 10.1038/s41592-024-02208-7. Epub 2024 Mar 5. Nat Methods. 2024. PMID: 38443507 Free PMC article.
-
Single-Molecule-Based, Label-Free Monitoring of Molecular Glue Efficacies for Promoting Protein-Protein Interactions Using YaxAB Nanopores.ACS Nano. 2024 Nov 12;18(45):31451-31465. doi: 10.1021/acsnano.4c11436. Epub 2024 Oct 31. ACS Nano. 2024. PMID: 39482865 Free PMC article.
-
Unclogged pores: designer channels for protein translocation.Commun Biol. 2024 Jan 9;7(1):71. doi: 10.1038/s42003-023-05723-z. Commun Biol. 2024. PMID: 38195667 Free PMC article.
-
Tracking flaviviral protease conformational dynamics by tuning single-molecule nanopore tweezers.Biophys J. 2025 Jan 7;124(1):145-157. doi: 10.1016/j.bpj.2024.11.017. Epub 2024 Nov 22. Biophys J. 2025. PMID: 39578408
-
Brownian motion data augmentation: a method to push neural network performance on nanopore sensors.Bioinformatics. 2025 Jun 2;41(6):btaf323. doi: 10.1093/bioinformatics/btaf323. Bioinformatics. 2025. PMID: 40439147 Free PMC article.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources