Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug;108(2):L022601.
doi: 10.1103/PhysRevE.108.L022601.

Method to probe the pronounced growth of correlation lengths in active glass-forming liquids using an elongated probe

Affiliations

Method to probe the pronounced growth of correlation lengths in active glass-forming liquids using an elongated probe

Anoop Mutneja et al. Phys Rev E. 2023 Aug.

Abstract

The growth of correlation lengths in equilibrium glass-forming liquids near the glass transition is considered a critical finding in the quest to understand the physics of glass formation. These understandings helped us understand various dynamical phenomena observed in supercooled liquids. It is known that at least two different length scales exist; one is of thermodynamic origin, while the other is dynamical in nature. Recent observations of glassy dynamics in biological and synthetic systems where the external or internal driving source controls the dynamics, apart from the usual thermal noise, lead to the emergence of the field of active glassy matter. A question of whether the physics of glass formation in these active systems is also accompanied by growing dynamic and static lengths is indeed timely. In this article, we probe the growth of dynamic and static lengths in a model active glass system using rod-like elongated probe particles, an experimentally viable method. We show that the dynamic and static lengths in these nonequilibrium systems grow much more rapidly than their passive counterparts. We then offer an understanding of the violation of the Stokes-Einstein relation and Stokes-Einstein-Debye relation using these lengths via a scaling theory.

PubMed Disclaimer

Similar articles