Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug;108(2-1):024122.
doi: 10.1103/PhysRevE.108.024122.

Multicritical bifurcation and first-order phase transitions in a three-dimensional Blume-Capel antiferromagnet

Affiliations

Multicritical bifurcation and first-order phase transitions in a three-dimensional Blume-Capel antiferromagnet

Daniel Silva et al. Phys Rev E. 2023 Aug.

Abstract

We present a detailed study by Monte Carlo simulations and finite-size scaling analysis of the phase diagram and ordered bulk phases for the three-dimensional Blume-Capel antiferromagnet in the space of temperature and magnetic and crystal fields (or two chemical potentials in an equivalent lattice-gas model with two particle species and vacancies). The phase diagram consists of surfaces of second- and first-order transitions that enclose a "volume" of ordered phases in the phase space. At relatively high temperatures, these surfaces join smoothly along a line of tricritical points, and at zero magnetic field we obtain good agreement with known values for tricritical exponent ratios [Y. Deng and H. W. J. Blöte, Phys. Rev. E 70, 046111 (2004)10.1103/PhysRevE.70.046111]. In limited field regions at lower temperatures (symmetric under reversal of the magnetic field), the tricritical line for this three-dimensional model bifurcates into lines of critical endpoints and critical points, connected by a surface of weak first-order transitions inside the region of ordered phases. This phenomenon is not seen in the two-dimensional version of the same model. We confirm the location of the bifurcation as previously reported [Y.-L. Wang and J. D. Kimel, J. Appl. Phys. 69, 6176 (1991)0021-897910.1063/1.348797], and we identify the phases separated by this first-order surface as antiferromagnetically (three-dimensional checker-board) ordered with different vacancy densities. We visualize the phases by real-space snapshots and by structure factors in the three-dimensional space of wave vectors.

PubMed Disclaimer