Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov;6(11):3144-51.
doi: 10.1523/JNEUROSCI.06-11-03144.1986.

Effects of ischemia-like conditions on cultured neurons: protection by low Na+, low Ca2+ solutions

Effects of ischemia-like conditions on cultured neurons: protection by low Na+, low Ca2+ solutions

W J Goldberg et al. J Neurosci. 1986 Nov.

Abstract

An in vitro system was used to mimic several aspects of ischemia, including low oxygen pressure, low nutrient levels, and the accumulation of cellular products thought to contribute to damage during ischemia. We replaced normal culture medium from 3-week-old basal ganglia cultures with oxygen-depleted, nutrient-deficient medium. After incubation in an atmosphere of 94% N2, 6% CO2 for 5 hr at 37 degrees C, the cultures were returned to normal medium. After a 24 hr recovery period, cell viability was assessed in terms of cell number, electrophysiological properties, and immunohistochemical markers. When the medium used during the ischemic period was a normal balanced salt solution, more than 70% of the cells were damaged by the low-oxygen, low-glucose stress. Loss of cell processes and cell swelling were the most evident signs of damage. The majority of the cells remaining viable were astrocytes. Neuronal damage was observed only when both glucose and oxygen were deficient. Some damage was evident even at oxygen tensions of 60 mm Hg when glucose was absent from the medium; much more extensive damage was observed at tensions below 1.0 mm Hg. Lowering both extracellular sodium and calcium resulted in more than a 2-fold increase in survival (70 vs 28%). These results indicate that damage to neurons during conditions of extreme energy deprivation such as ischemia may be mediated by the influx of calcium and/or sodium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources