Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications
- PMID: 37726105
- PMCID: PMC11475525
- DOI: 10.1002/adma.202304523
Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications
Abstract
The past decade has witnessed a rapid rise in the performance of optoelectronic devices based on lead-halide perovskites (LHPs). The large mobility-lifetime products and defect tolerance of these materials, essential for optoelectronics, also make them well-suited for radiation detectors, especially given the heavy elements present, which is essential for strong X-ray and γ-ray attenuation. Over the past decade, LHP thick films, wafers, and single crystals have given rise to direct radiation detectors that have outperformed incumbent technologies in terms of sensitivity (reported values up to 3.5 × 106 µC Gyair -1 cm-2 ), limit of detection (directly measured values down to 1.5 nGyair s-1 ), along with competitive energy and imaging resolution at room temperature. At the same time, lead-free perovskite-inspired materials (e.g., methylammonium bismuth iodide), which have underperformed in solar cells, have recently matched and, in some areas (e.g., in polarization stability), surpassed the performance of LHP detectors. These advances open up opportunities to achieve devices for safer medical imaging, as well as more effective non-invasive analysis for security, nuclear safety, or product inspection applications. Herein, the principles behind the rapid rises in performance of LHP and perovskite-inspired material detectors, and how their properties and performance link with critical applications in non-invasive diagnostics are discussed. The key strategies to engineer the performance of these materials, and the important challenges to overcome to commercialize these new technologies are also discussed.
Keywords: charge-carrier kinetics; halide perovskites; imaging; ion migration; perovskite-inspired materials; radiation detectors; stability.
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





















Similar articles
-
Robust Fabrication of Hybrid Lead-Free Perovskite Pellets for Stable X-ray Detectors with Low Detection Limit.Adv Mater. 2020 Aug;32(31):e2001981. doi: 10.1002/adma.202001981. Epub 2020 Jun 26. Adv Mater. 2020. PMID: 32588518
-
3D/1D Perovskite Heterojunction for High-Performance Direct X-ray Detector.Small. 2025 May;21(21):e2501696. doi: 10.1002/smll.202501696. Epub 2025 Apr 15. Small. 2025. PMID: 40231552
-
Heterointerface Design of Perovskite Single Crystals for High-Performance X-Ray Imaging.Adv Mater. 2024 Jan;36(3):e2305513. doi: 10.1002/adma.202305513. Epub 2023 Nov 30. Adv Mater. 2024. PMID: 37878999
-
Lead-Free Halide Perovskites for Direct X-Ray Detectors.Adv Sci (Weinh). 2023 Aug;10(23):e2300256. doi: 10.1002/advs.202300256. Epub 2023 May 26. Adv Sci (Weinh). 2023. PMID: 37232232 Free PMC article. Review.
-
Thick-junction perovskite X-ray detectors: processing and optoelectronic considerations.Nanoscale. 2022 Jul 14;14(27):9636-9647. doi: 10.1039/d2nr01643e. Nanoscale. 2022. PMID: 35790163 Review.
Cited by
-
Aggregation-Induced Emissive Scintillators: A New Frontier for Radiation Detection and Imaging.Nanomicro Lett. 2025 Feb 24;17(1):160. doi: 10.1007/s40820-025-01671-x. Nanomicro Lett. 2025. PMID: 39992467 Free PMC article. Review.
-
Research on the Technological Progress of CZT Array Detectors.Sensors (Basel). 2024 Jan 23;24(3):725. doi: 10.3390/s24030725. Sensors (Basel). 2024. PMID: 38339441 Free PMC article. Review.
-
Green Fabrication of Sulfonium-Containing Bismuth Materials for High-Sensitivity X-Ray Detection.Adv Mater. 2025 Jun;37(24):e2418626. doi: 10.1002/adma.202418626. Epub 2025 Apr 10. Adv Mater. 2025. PMID: 40207598 Free PMC article.
-
Halide perovskites, a game changer for future medical imaging technology.Biophys Rev (Melville). 2025 Jan 22;6(1):011302. doi: 10.1063/5.0217068. eCollection 2025 Mar. Biophys Rev (Melville). 2025. PMID: 39867461 Review.
References
-
- Kojima A., Teshima K., Shirai Y., Miyasaka T., J. Am. Chem. Soc. 2009, 131, 6050. - PubMed
-
- Best Research‐Cell Efficiency Chart‐NREL, https://www.nrel.gov/pv/cell‐efficiency.html (accessed: April 2023).
-
- Tan Z. K., Moghaddam R. S., Lai M. L., Docampo P., Higler R., Deschler F., Price M., Sadhanala A., Pazos L. M., Credgington D., Hanusch F., Bein T., Snaith H. J., Friend R. H., Nat. Nanotechnol. 2014, 9, 687. - PubMed
-
- Liu Z., Qiu W., Peng X., Sun G., Liu X., Liu D., Li Z., He F., Shen C., Gu Q., Ma F., Yip H. L., Hou L., Qi Z., Su S. J., Adv. Mater. 2021, 33, 2103268. - PubMed
-
- Min H., Lee D. Y., Kim J., Kim G., Lee K. S., Kim J., Paik M. J., Kim Y. K., Kim K. S., Kim M. G., Shin T. J., Il Seok S., Nature 2021, 598, 444. - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous