Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles
- PMID: 37728515
- DOI: 10.1002/anie.202313096
Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles
Abstract
In eukaryotic cells, the membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) are found to interact intimately with membranous organelles (MOs). One major mode is the clustering of MOs by MLOs, such as the formation of clusters of synaptic vesicles at nerve terminals mediated by the synapsin-rich MLOs. Aqueous droplets, including complex coacervates and aqueous two-phase systems, have been plausible MLO-mimics to emulate or elucidate biological processes. However, neither of them can cluster lipid vesicles (LVs) like MLOs. In this work, we develop a synthetic droplet assembled from a combination of two different interactions underlying the formation of these two droplets, namely, associative and segregative interactions, which we call segregative-associative (SA) droplets. The SA droplets cluster and disperse LVs recapitulating the key functional features of synapsin condensates, which can be attributed to the weak electrostatic interaction environment provided by SA droplets. This work suggests LLPS with combined segregative and associative interactions as a possible route for synaptic clustering of lipid vesicles and highlights SA droplets as plausible MLO-mimics and models for studying and mimicking related cellular dynamics.
Keywords: Biomolecular Condensates; Lipid Vesicles; Liquid-Liquid Phase Separation; Membraneless Organelles; Synthetic Cell.
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Similar articles
-
MLOsMetaDB, a meta-database to centralize the information on liquid-liquid phase separation proteins and membraneless organelles.Protein Sci. 2024 Jan;33(1):e4858. doi: 10.1002/pro.4858. Protein Sci. 2024. PMID: 38063081 Free PMC article.
-
Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).Anal Biochem. 2020 May 15;597:113691. doi: 10.1016/j.ab.2020.113691. Epub 2020 Mar 16. Anal Biochem. 2020. PMID: 32194074 Review.
-
Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation.ACS Nano. 2025 Jun 10;19(22):20550-20563. doi: 10.1021/acsnano.4c18971. Epub 2025 Apr 28. ACS Nano. 2025. PMID: 40293809 Free PMC article.
-
Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle.J Mol Biol. 2023 Jan 15;435(1):167629. doi: 10.1016/j.jmb.2022.167629. Epub 2022 May 17. J Mol Biol. 2023. PMID: 35595170 Review.
-
Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates.Mol Cell. 2021 Jan 7;81(1):13-24.e7. doi: 10.1016/j.molcel.2020.10.029. Epub 2020 Nov 16. Mol Cell. 2021. PMID: 33202250
Cited by
-
Biomineralization-Inspired Membranization Toward Structural Enhancement of Coacervate Community.Adv Sci (Weinh). 2025 May;12(18):e2417832. doi: 10.1002/advs.202417832. Epub 2025 Mar 16. Adv Sci (Weinh). 2025. PMID: 40089856 Free PMC article.
-
Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions.Commun Chem. 2024 Apr 9;7(1):79. doi: 10.1038/s42004-024-01168-5. Commun Chem. 2024. PMID: 38594355 Free PMC article. Review.
References
-
- None
-
- S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 2017, 18, 285-298;
-
- A. S. Lyon, W. B. Peeples, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 2021, 22, 215-235.
-
- Y. G. Zhao, H. Zhang, Dev. Cell 2020, 55, 30-44.
-
- Y. Fujioka, J. M. Alam, D. Noshiro, K. Mouri, T. Ando, Y. Okada, A. I. May, R. L. Knorr, K. Suzuki, Y. Ohsumi, N. N. Noda, Nature 2020, 578, 301-305.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous