An acoustically controlled helical microrobot
- PMID: 37729400
- PMCID: PMC10511192
- DOI: 10.1126/sciadv.adh5260
An acoustically controlled helical microrobot
Abstract
As a next-generation toolkit, microrobots can transform a wide range of fields, including micromanufacturing, electronics, microfluidics, tissue engineering, and medicine. While still in their infancy, acoustically actuated microrobots are becoming increasingly attractive. However, the interaction of acoustics with microstructure geometry is poorly understood, and its study is necessary for developing next-generation acoustically powered microrobots. We present an acoustically driven helical microrobot with a length of 350 μm and a diameter of 100 μm that is capable of locomotion using a fin-like double-helix microstructure. This microrobot responds to sound stimuli at ~12 to 19 kHz and mimics the spiral motion of natural microswimmers such as spirochetes. The asymmetric double helix interacts with the incident acoustic field, inducing a propulsion torque that causes the microrobot to rotate around its long axis. Moreover, our microrobot has the unique feature of its directionality being switchable by simply tuning the acoustic frequency. We demonstrate this locomotion in 2D and 3D artificial vasculatures using a single sound source.
Figures






Similar articles
-
Acoustically powered surface-slipping mobile microrobots.Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3469-3477. doi: 10.1073/pnas.1920099117. Epub 2020 Feb 3. Proc Natl Acad Sci U S A. 2020. PMID: 32015114 Free PMC article.
-
Acoustic Streaming-Induced Multimodal Locomotion of Bubble-Based Microrobots.Adv Sci (Weinh). 2023 Dec;10(35):e2304233. doi: 10.1002/advs.202304233. Epub 2023 Oct 26. Adv Sci (Weinh). 2023. PMID: 37884484 Free PMC article.
-
Study on Structural Design and Motion Characteristics of Magnetic Helical Soft Microrobots with Drug-Carrying Function.Micromachines (Basel). 2024 May 31;15(6):731. doi: 10.3390/mi15060731. Micromachines (Basel). 2024. PMID: 38930701 Free PMC article.
-
Acoustics-Actuated Microrobots.Micromachines (Basel). 2022 Mar 20;13(3):481. doi: 10.3390/mi13030481. Micromachines (Basel). 2022. PMID: 35334771 Free PMC article. Review.
-
3D-printed microrobots from design to translation.Nat Commun. 2022 Oct 5;13(1):5875. doi: 10.1038/s41467-022-33409-3. Nat Commun. 2022. PMID: 36198675 Free PMC article. Review.
Cited by
-
Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation.Sci Adv. 2024 May 24;10(21):eadm7698. doi: 10.1126/sciadv.adm7698. Epub 2024 May 24. Sci Adv. 2024. PMID: 38787945 Free PMC article.
-
Acoustic Actuators for the Manipulation of Micro/Nanorobots: State-of-the-Art and Future Outlooks.Micromachines (Basel). 2024 Jan 26;15(2):186. doi: 10.3390/mi15020186. Micromachines (Basel). 2024. PMID: 38398914 Free PMC article. Review.
-
Multi-Physical Lattice Metamaterials Enabled by Additive Manufacturing: Design Principles, Interaction Mechanisms, and Multifunctional Applications.Adv Sci (Weinh). 2025 Feb;12(8):e2405835. doi: 10.1002/advs.202405835. Epub 2025 Jan 20. Adv Sci (Weinh). 2025. PMID: 39834122 Free PMC article. Review.
-
Femtosecond laser-assisted printing of hard magnetic microrobots for swimming upstream in subcentimeter-per-second blood flow.Sci Adv. 2025 Jul 4;11(27):eadw1272. doi: 10.1126/sciadv.adw1272. Epub 2025 Jul 4. Sci Adv. 2025. PMID: 40614197 Free PMC article.
-
Acoustic technologies for the orchestration of cellular functions for therapeutic applications.Sci Adv. 2025 Jul 18;11(29):eadu4759. doi: 10.1126/sciadv.adu4759. Epub 2025 Jul 18. Sci Adv. 2025. PMID: 40680134 Free PMC article. Review.
References
-
- N. W. Charon, S. F. Goldstein, Genetics of motility and chemotaxis of a fascinating group of bacteria: The spirochetes. Annu. Rev. Genet. 36, 47–73 (2002). - PubMed
-
- C. Li, A. Motaleb, M. Sal, S. F. Goldstein, N. W. Charon, Spirochete periplasmic flagella and motility. J. Mol. Microbiol. Biotechnol. 2, 345–354 (2000). - PubMed
-
- A. Ghosh, D. Dasgupta, M. Pal, K. I. Morozov, A. M. Leshansky, A. Ghosh, Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28, 1705687 (2018).
-
- L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell, B. J. Nelson, Artificial bacterial flagella: Fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009).
-
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.-X. J. Wang, K. Kostarelos, L. Zhang, Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017). - PubMed
LinkOut - more resources
Full Text Sources
Research Materials