A closed-loop catalytic nanoreactor system on a transistor
- PMID: 37729411
- PMCID: PMC10511191
- DOI: 10.1126/sciadv.adj0839
A closed-loop catalytic nanoreactor system on a transistor
Abstract
Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.
Figures




Similar articles
-
Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges.Adv Colloid Interface Sci. 2023 Dec;322:103037. doi: 10.1016/j.cis.2023.103037. Epub 2023 Oct 31. Adv Colloid Interface Sci. 2023. PMID: 37931381 Review.
-
In Situ Determination of Sialic Acid on Cell Surface with a pH-Regulated Polymer Enzyme Nanoreactor.Anal Chem. 2021 May 18;93(19):7317-7322. doi: 10.1021/acs.analchem.1c00880. Epub 2021 May 5. Anal Chem. 2021. PMID: 33949860
-
Kinetics Driven by Hollow Nanoreactors: An Opportunity for Controllable Catalysis.Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202213612. doi: 10.1002/anie.202213612. Epub 2022 Dec 7. Angew Chem Int Ed Engl. 2023. PMID: 36346146 Review.
-
Metal-organic framework nanoreactor-based electrochemical biosensor coupled with three-dimensional DNA walker for label-free detection of microRNA.Biosens Bioelectron. 2022 Jul 1;207:114188. doi: 10.1016/j.bios.2022.114188. Epub 2022 Mar 15. Biosens Bioelectron. 2022. PMID: 35339822
-
One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis.Exploration (Beijing). 2023 May 11;3(3):20220164. doi: 10.1002/EXP.20220164. eCollection 2023 Jun. Exploration (Beijing). 2023. PMID: 37933386 Free PMC article. Review.
Cited by
-
Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry.Nat Commun. 2025 Feb 5;16(1):1089. doi: 10.1038/s41467-025-56052-0. Nat Commun. 2025. PMID: 39910030 Free PMC article.
-
From Micro to Marvel: Unleashing the Full Potential of Click Chemistry with Micromachine Integration.Micromachines (Basel). 2025 Jun 15;16(6):712. doi: 10.3390/mi16060712. Micromachines (Basel). 2025. PMID: 40572432 Free PMC article. Review.
References
-
- Angello N. H., Rathore V., Beker W., Wołos A., Jira E. R., Roszak R., Wu T. C., Schroeder C. M., Aspuru-Guzik A., Grzybowski B. A., Burke M. D., Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022). - PubMed
-
- Burger B., Maffettone P. M., Gusev V. V., Aitchison C. M., Bai Y., Wang X., Li X., Alston B. M., Li B., Clowes R., Rankin N., Harris B., Sprick R. S., Cooper A. I., A mobile robotic chemist. Nature 583, 237–241 (2020). - PubMed
-
- Contente M. L., Paradisi F., Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions. Nat. Catal. 1, 452–459 (2018).
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous