Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness
- PMID: 37729502
- PMCID: PMC10516248
- DOI: 10.2337/dci23-0032
Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness
Abstract
Current guidelines recommend that individuals with diabetes receive yearly eye exams for detection of referable diabetic retinopathy (DR), one of the leading causes of new-onset blindness. For addressing the immense screening burden, artificial intelligence (AI) algorithms have been developed to autonomously screen for DR from fundus photography without human input. Over the last 10 years, many AI algorithms have achieved good sensitivity and specificity (>85%) for detection of referable DR compared with human graders; however, many questions still remain. In this narrative review on AI in DR screening, we discuss key concepts in AI algorithm development as a background for understanding the algorithms. We present the AI algorithms that have been prospectively validated against human graders and demonstrate the variability of reference standards and cohort demographics. We review the limited head-to-head validation studies where investigators attempt to directly compare the available algorithms. Next, we discuss the literature regarding cost-effectiveness, equity and bias, and medicolegal considerations, all of which play a role in the implementation of these AI algorithms in clinical practice. Lastly, we highlight ongoing efforts to bridge gaps in AI model data sets to pursue equitable development and delivery.
© 2023 by the American Diabetes Association.
Conflict of interest statement
Figures
References
-
- Teo ZL, Tham YC, Yu M, et al. . Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 2021;128:1580–1591 - PubMed
-
- Fong DS, Aiello L, Gardner TW, et al. .; American Diabetes Association . Retinopathy in diabetes. In Clinical Practice Recommendations, 2004. Diabetes Care 2004;27(Suppl. 1):S84–S87 - PubMed
-
- AAO PPP Retina/Vitreous Committee, Hoskins Center for Quality Eye Care . Diabetic Retinopathy PPP 2019. American Academy of Ophthalmology, 2019. Accessed 7 April 2023. Available from https://www.aao.org/education/preferred-practice-pattern/diabetic-retino...
-
- Vujosevic S, Aldington SJ, Silva P, et al. . Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol 2020;8:337–347 - PubMed
-
- Wilkinson CP, Ferris FL 3rd, Klein RE, et al. .; Global Diabetic Retinopathy Project Group . Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003;110:1677–1682 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
