Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2023 Oct 1;37(10):2016-2022.
doi: 10.1519/JSC.0000000000004502.

Repeated Short-Term Bouts of Hyperoxia Improve Aerobic Performance in Acute Hypoxia

Affiliations
Randomized Controlled Trial

Repeated Short-Term Bouts of Hyperoxia Improve Aerobic Performance in Acute Hypoxia

Martin Faulhaber et al. J Strength Cond Res. .

Abstract

Faulhaber, M, Schneider, S, Rausch, LK, Dünnwald, T, Menz, V, Gatterer, H, Kennedy, MD, and Schobersberger, W. Repeated short-term bouts of hyperoxia improve aerobic performance in acute hypoxia. J Strength Cond Res 37(10): 2016-2022, 2023-This study aimed to test the effects of repeated short-term bouts of hyperoxia on maximal 5-minute cycling performance under acute hypoxic conditions (3,200 m). Seventeen healthy and recreationally trained individuals (7 women and 10 men) participated in this randomized placebo-controlled cross-over trial. The procedures included a maximal cycle ergometer test and 3 maximal 5-minute cycling time trials (TTs). TT1 took place in normoxia and served for habituation and reference. TT2 and TT3 were conducted in normobaric hypoxia (15.0% inspiratory fraction of oxygen). During TT2 and TT3, the subjects were breathing through a face mask during five 15-second periods. The face mask was connected through a nonrebreathing T valve to a 300-L bag filled with 100% oxygen (intermittent hyperoxia) or ambient hypoxic air (placebo). The main outcome was the mean power output during the TT. Statistical significance level was set at p < 0.05. The mean power output was higher in the intermittent hyperoxia compared with the placebo condition (255.5 ± 49.6 W vs. 247.4 ± 48.2 W, p = 0.001). Blood lactate concentration and ratings of perceived exertion were significantly lower by about 9.7 and 7.3%, respectively, in the intermittent hyperoxia compared with the placebo condition, whereas heart rate values were unchanged. IH application increased arterial oxygen saturation (82.9 ± 2.6% to 92.4 ± 3.3%, p < 0.001). Repeated 15-second bouts of hyperoxia, applied during high-intensity exercise in hypoxia, are sufficient to increase power output. Future studies should focus on potential dose-response effects and the involved mechanisms.

PubMed Disclaimer

References

    1. Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol 10: 149–164, 2009.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14: 377–381, 1982.
    1. Burtscher M, Faulhaber M, Flatz M, Likar R, Nachbauer W. Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int J Sports Med 27: 629–635, 2006.
    1. Burtscher M, Wille M, Menz V, Faulhaber M, Gatterer H. Symptom progression in acute mountain sickness during a 12-hour exposure to normobaric hypoxia equivalent to 4500 m. High Alt Med Biol 15: 446–451, 2014.
    1. Calbet JAL, Rådegran G, Boushel R, Saltin B. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: Role of muscle mass. J Physiol 587: 477–490, 2009.

Publication types

LinkOut - more resources