Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;23(1):193-205.
doi: 10.1007/s10237-023-01767-6. Epub 2023 Sep 21.

A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia

Affiliations

A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia

Katherine R Knaus et al. Biomech Model Mechanobiol. 2024 Feb.

Abstract

Presbyopia is an age-related ocular disorder where accommodative ability declines so that an individual's focusing range is insufficient to provide visual clarity for near and distance vision tasks without corrective measures. With age, the eye exhibits changes in biomechanical properties of many components involved in accommodation, including the lens, sclera, and ciliary muscle. Changes occur at different rates, affecting accommodative biomechanics differently, but individual contributions to presbyopia are unknown. We used a finite element model (FEM) of the accommodative mechanism to simulate age-related changes in lens stiffness, scleral stiffness, and ciliary contraction to predict differences in accommodative function. The FEM predicts how ciliary muscle action leads to lens displacement by initializing a tensioned unaccommodated lens (Phase 0) then simulating ciliary muscle contraction in accommodation (Phase 1). Model inputs were calibrated to replicate experimentally measured lens and ciliary muscle in 30-year-old eyes. Predictions of accommodative lens deformation were verified with additional imaging studies. Model variations were created with altered lens component stiffnesses, scleral stiffness, or ciliary muscle section activations, representing fifteen-year incremental age-related changes. Model variations predict significant changes in accommodative function with age-related biomechanical property changes. Lens changes only significantly altered lens thickening with advanced age (46% decrease at 75 years old) while sclera changes produced progressive dysfunction with increasing age (23%, 36%, 49% decrease at 45, 60, and 75 years old). Ciliary muscle changes effected lens position modulation. Model predictions identified potential mechanisms of presbyopia that likely work in combination to reduce accommodative function and could indicate effectiveness of treatment strategies and their dependency on patient age or relative ocular mechanical properties.

Keywords: Accommodative dysfunction; Aging lens; Ciliary muscle; Finite-element modeling; Ocular biomechanics; Sclera mechanical properties.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Amini R, Barocas VH (2009) Anterior chamber angle opening during corneoscleral indentation: the mechanism of whole eye globe deformation and the importance of the limbus. Investig Ophthalmol vis Sci 50(11):5288–5294. https://doi.org/10.1167/IOVS.08-2890 - DOI
    1. Blemker SS, Delp SL (2005) Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng 33(5):661–673. https://doi.org/10.1007/s10439-005-1433-7 - DOI - PubMed
    1. Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38(4):657–665. https://doi.org/10.1016/j.jbiomech.2004.04.009 - DOI - PubMed
    1. Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA (2020) Scleral structure and biomechanics. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2019.100773 - DOI - PubMed
    1. Brown N (1973) The change in shape and internal form of the lens of the eye on accommodation. Exp Eye Res 15(4):441–459 - DOI - PubMed

LinkOut - more resources