Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:80:127302.
doi: 10.1016/j.jtemb.2023.127302. Epub 2023 Sep 7.

Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells

Affiliations

Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells

Maqsood A Siddiqui et al. J Trace Elem Med Biol. 2023 Dec.

Abstract

Background: Nanotechnology and material science have developed enormously fast in recent years. Due to their excellent magnetic properties, iron oxide nanoparticles (IONPs) have been broadly applied in the field of bioengineering and biomedical. Thus, it is important to evaluate the safety issues and health effects of these nanomaterials. The present investigation was aimed to evaluate the adverse effects of IONPs on human umbilical vein endothelial cells (HUVECs).

Methods: The cytotoxic potential of IONPs was assessed by MTT and neutral red uptake (NRU) assays. The impact of IONPs on oxidative stress markers (glutathione (GSH) and lipid peroxidation (LPO)), reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) was also examined. Furthermore, the toxic effect of IONPs was quantified by assessing DNA damage, cell cycle arrest, and apoptosis by quantitative real time PCR.

Results: We found that IONPs induce a dose-dependent cytotoxicity on HUVECs with IC50 value of 79.13 μg/mL. The results also displayed that IONPs induce oxidative stress, ROS production, and mitochondrial membrane dysfunction. The comet assay results exhibited IONPs induces DNA damage in HUVECs. We found significant cell cycle arrest at SubG1 phase in treated cells and consequent cell death was evidenced by microscopic analysis. Moreover, IONPs display substantial up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic gene evidenced by real time qPCR.

Conclusion: Overall, our results clearly demonstrated that IONPs have the potential to induce cytotoxicity, DNA damage, cell cycle arrest, and apoptosis in HUVECs mediated through oxidative stress and ROS production. Thus, IONPs are cytotoxic and it should be handled with proper care.

Keywords: Cell cycle arrest; Cytotoxicity; DNA Damage; Gene expression; Iron oxide nanoparticles; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources