Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 24;14(36):9806-9813.
doi: 10.1039/d3sc03143h. eCollection 2023 Sep 20.

Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free

Affiliations

Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free

David M Kitcatt et al. Chem Sci. .

Abstract

A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Intermolecular Giese amidations.
Scheme 2
Scheme 2. Proposed mechanisms. Conditions A: photocatalytic reductive quenching cycle. Conditions B: metal- and light-free thermal decarboxylation. Conditions C: photocatalytic oxidative quenching cycle.
Scheme 3
Scheme 3. Dealkylation observed with conditions B and C for synthesis of tertiary amide.

Similar articles

Cited by

References

    1. For recent review on radical chemistry, see:

    2. Yan M. Lo J. C. Edwards J. T. Baran P. S. J. Am. Chem. Soc. 2016;138:12692–12714. doi: 10.1021/jacs.6b08856. - DOI - PMC - PubMed
    1. For recent reviews on Giese reactions, see:

    2. Kitcatt D. M. Nicolle S. Lee A.-L. Chem. Soc. Rev. 2022;51:1415–1453. doi: 10.1039/D1CS01168E. - DOI - PubMed
    3. Gant Kanegusuku A. L. Roizen J. L. Angew. Chem., Int. Ed. 2021;60:21116–21149. doi: 10.1002/anie.202016666. - DOI - PMC - PubMed
    1. Bloom S. Liu C. Kölmel D. K. Qiao J. X. Zhang Y. Poss M. A. Ewing W. R. MacMillan D. W. C. Nat. Chem. 2018;10:205–211. doi: 10.1038/nchem.2888. - DOI - PMC - PubMed
    1. Merkens K. Aguilar Troyano F. J. Anwar K. Gómez-Suárez A. J. Org. Chem. 2021;86:8448–8456. doi: 10.1021/acs.joc.0c02951. - DOI - PubMed
    2. Zhang O. Schubert J. W. J. Org. Chem. 2020;85:6225–6232. doi: 10.1021/acs.joc.0c00635. - DOI - PubMed
    3. Ji P. Zhang Y. Dong Y. Huang H. Wei Y. Wang W. Org. Lett. 2020;22:1557–1562. doi: 10.1021/acs.orglett.0c00154. - DOI - PMC - PubMed
    4. Shah A. A. Kelly, III M. J. Perkins J. J. Org. Lett. 2020;22:2196–2200. doi: 10.1021/acs.orglett.0c00371. - DOI - PubMed
    1. McCarver S. J. Qiao J. X. Carpenter J. Borzilleri R. M. Poss M. A. Eastgate M. D. Miller M. M. MacMillan D. W. C. Angew. Chem., Int. Ed. 2017;56:728–732. doi: 10.1002/anie.201608207. - DOI - PMC - PubMed