Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 4;6(5):79.
doi: 10.3390/mps6050079.

Quantitative Polymerase Chain Reaction System for Alongshan Virus Detection

Affiliations

Quantitative Polymerase Chain Reaction System for Alongshan Virus Detection

Alexander G Litov et al. Methods Protoc. .

Abstract

The recently discovered Jingmenvirus group includes viruses with a segmented genome, RNA of a positive polarity, and several proteins with distant homology to the proteins of the members of the genus Orthoflavivirus. Some Jingmenvirus group members, namely the Alongshan virus (ALSV) and Jingmen tick virus, are reported to be tick-borne human pathogens that can cause a wide variety of symptoms. The ALSV is widely distributed in Eurasia, yet no reliable assay that can detect it exists. We describe a qPCR system for ALSV detection. Our data showed that this system can detect as little as 104 copies of the ALSV in a sample. The system showed no amplification of the common tick-borne viruses circulating in Eurasia, i.e., the Yanggou tick virus-which is another Jingmenvirus group member-or some known members of the genus Orthoflavivirus. The qPCR system was tested and had no nonspecific signal for the Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, Haemaphysalis concinna, and H. japonica ticks. The qPCR system had no nonspecific signal for human and sheep serum as well. Overall, the qPCR system described here can be used for reliable and quantitative ALSV detection.

Keywords: Alongshan virus; Jingmenvirus group; Orthoflavivirus; Yanggou tick virus; qPCR; tick-borne viruses.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Amplification curve of the standard RNA of a known amount.

References

    1. Lindenbach B.D., Thiel H.-J., Rice C.M. Flaviviridae: The Viruses and Their Replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 5th ed. Lippincott-Raven Publishers; Philadelphia, PA, USA: 2007. pp. 1101–1151.
    1. Rossi S.L., Ross T.M., Evans J.D. West Nile virus. Clin. Lab. Med. 2010;30:47–65. doi: 10.1016/j.cll.2009.10.006. - DOI - PMC - PubMed
    1. Whitehorn J., Simmons C.P. The pathogenesis of dengue. Vaccine. 2011;29:7221–7228. doi: 10.1016/j.vaccine.2011.07.022. - DOI - PubMed
    1. Wikan N., Smith D.R. Zika virus: History of a newly emerging arbovirus. Lancet Infect. Dis. 2016;16:e119–e126. doi: 10.1016/S1473-3099(16)30010-X. - DOI - PubMed
    1. Ruzek D., Av T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Kozlovskaya L., Matveev A., Miller A.D., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. - DOI - PubMed

LinkOut - more resources