This is a preprint.
Knockout of the longevity gene Klotho perturbs aging- and Alzheimer's disease-linked brain microRNAs and tRNA fragments
- PMID: 37745362
- PMCID: PMC10515819
- DOI: 10.1101/2023.09.10.557032
Knockout of the longevity gene Klotho perturbs aging- and Alzheimer's disease-linked brain microRNAs and tRNA fragments
Update in
- 
  
  Knockout of the longevity gene Klotho perturbs aging and Alzheimer's disease-linked brain microRNAs and tRNA fragments.Commun Biol. 2024 Jun 11;7(1):720. doi: 10.1038/s42003-024-06407-y. Commun Biol. 2024. PMID: 38862813 Free PMC article.
Abstract
Overexpression of the longevity gene Klotho prolongs, while its knockout shortens lifespan and impairs cognition via altered fibroblast growth factor signaling that perturbs myelination and synapse formation; however, comprehensive analysis of Klotho's knockout consequences on mammalian brain transcriptomics is lacking. Here, we report the altered levels under Klotho knockout of 1059 long RNAs, 27 microRNAs (miRs) and 6 tRNA fragments (tRFs), reflecting effects upon aging and cognition. Perturbed transcripts included key neuronal and glial pathway regulators that are notably changed in murine models of aging and Alzheimer's Disease (AD) and in corresponding human post-mortem brain tissue. To seek cell type distributions of the affected short RNAs, we isolated and FACS-sorted neurons and microglia from live human brain tissue, yielding detailed cell type-specific short RNA-seq datasets. Together, our findings revealed multiple Klotho deficiency-perturbed aging- and neurodegeneration-related long and short RNA transcripts in both neurons and glia from murine and human brain.
Publication types
Grants and funding
LinkOut - more resources
- Full Text Sources
 
        