Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 2:3:1062444.
doi: 10.3389/ffunb.2022.1062444. eCollection 2022.

A survey of Fusarium species and ADON genotype on Canadian wheat grain

Affiliations

A survey of Fusarium species and ADON genotype on Canadian wheat grain

Janice Bamforth et al. Front Fungal Biol. .

Abstract

Introduction: Wheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different Fusarium species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is F. graminearum, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON).

Materials and methods: We used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020.

Results and discussion: Based on single-seed analyses, we demonstrate the relationships between Fusarium species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of Fusarium damaged kernels (FDK), and accumulation of DON. Results indicate that various Fusarium species are present across wheat growing regions in Canada; however, F. graminearum is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in Fusarium species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.

Keywords: Fusarium; chemotype; deoxynivalenol (DON); grains; qPCR; wheat.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Map of Canada. (A) Wheat samples were obtained from western (blue) and eastern (gold) Canada. (B) Most of the samples were from the western Canadian provinces of Alberta, Saskatchewan, and Manitoba, which are organized into different crop districts based on growing conditions and geography.
Figure 2
Figure 2
Relative abundance and species diversity of Fusarium species in Canada from 2014-2016, 2018-2020. (A) Relative abundance of different Fusarium species in Fusarium damaged kernels (n) by year. (B) Species diversity of different Fusarium species in wheat samples with FDK (n) by year. (C) Relative abundance of different Fusarium species in Fusarium damaged kernels (n) by Canadian provinces. (D) Relative abundance of different Fusarium species in Fusarium damaged kernels (n) across Canadian provinces. Relative abundance is the proportion of species-specific positive qPCR test results out of the total positive test results. Asterisks (*) signify putative F. acuminatum. Species diversity is Shannon’s diversity index based on the proportions of species for each sample.
Figure 3
Figure 3
Relative abundance in kernels and species diversity in wheat samples of Fusarium species in western Canadian provinces across all years. (A) Relative abundance and species diversity of Fusarium species in Alberta. (B) Relative abundance and species diversity of Fusarium species in Saskatchewan. (C) Relative abundance and species diversity of Fusarium species in Manitoba. Asterisks (*) signify putative F. acuminatum.
Figure 4
Figure 4
Mean DON (mg/kg) detected from CGC-HSP by different Fusarium species present in wheat samples. Asterisks (*) signify putative F. acuminatum.
Figure 5
Figure 5
Proportion of ADON genotypes in each sample by western Canadian crop district. Each vertical bar represents a single sample where multiple FDK were tested. Samples corresponding to crop districts in Alberta (top left), Manitoba (top right), and Saskatchewan (bottom) contained kernels that were positive for 15-ADON (blue), 3-ADON (red), or both genotypes (yellow).
Figure 6
Figure 6
The proportion of different trichothecene genotypes present in wheat kernels across years. The proportion of kernels testing positive for 15-ADON (top), 3-ADON (middle), or both (bottom) for (A) hexaploid wheat, and (B) durum wheat.
Figure 7
Figure 7
The FHB severity and DON levels for samples with kernels testing positive for different ADON genotypes. The boxes represent the interquartile range (IQR; 25% percentile, median, 75% percentile), the whiskers representing the highest and lowest values within the boundaries of 1.5 × IQR, and dots above the box and whisker plots signify outliers. (A) FHB severity (%) for samples containing kernels testing positive for either or both ADON genotypes. (B) DON (mg/kg) for samples containing kernels testing positive for either or both DON genotypes.
Figure 8
Figure 8
Relative abundance and diversity of Fusarium species in (A) hexaploid and (B) durum wheat across years. Asterisks (*) signify putative F. acuminatum.

References

    1. Alexander N. J., McCormick S. P., Waalwijk C., van der Lee T., Proctor R. H. (2011). The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in fusarium. Fungal Genet. Biol. 48 (5), 485–495. doi: 10.1016/j.fgb.2011.01.003 - DOI - PubMed
    1. Arnold J. B. (2019). “Ggthemes: Extra themes, scales and geoms for ‘ggplot2’,” in R package version, vol. 4. .
    1. Beccari G., Arellano C., Covarelli L., Tini F., Sulyok M., Cowger C. (2019). Effect of wheat infection timing on fusarium head blight causal agents and secondary metabolites in grain. Int. J. Food Microbiol. 290, 214–225. doi: 10.1016/j.ijfoodmicro.2018.10.014 - DOI - PubMed
    1. Brown N. A., Urban M., van de Meene A. M. L., Hammond-Kosack K. E. (2010). The infection biology of fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol. 114 (7), 555–571. doi: 10.1016/j.funbio.2010.04.006 - DOI - PubMed
    1. Canadian Grain Commission (2021. a) Official grain grading guide (Winnipeg MB: Canadian Grain Commission; ). Available at: https://www.grainscanada.gc.ca/en/grain-quality/official-grain-grading-g... (Accessed 2022 Apr 4).

LinkOut - more resources