Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 6;88(19):13995-14003.
doi: 10.1021/acs.joc.3c01536. Epub 2023 Sep 25.

Copper(II)-Catalyzed Three-Component Arylation/Hydroamination Cascade from Allyl Alcohol: Access to 1-Aryl-2-sulfonylamino-propanes

Affiliations

Copper(II)-Catalyzed Three-Component Arylation/Hydroamination Cascade from Allyl Alcohol: Access to 1-Aryl-2-sulfonylamino-propanes

Camilla Loro et al. J Org Chem. .

Abstract

A new straightforward approach to 1-aryl-2-aminopropanes using easily accessible substrates has been developed. Simple allyl alcohol is shown to be an ideal synthetic equivalent of the C3 propane-1,2-diylium bis-cation synthon in three-component cascade reactions with arenes and sulfonamide nucleophiles to regioselectively afford 1-aryl-2-aminopropanes. The reaction is catalyzed by Cu(OTf)2 and is expected to involve a Friedel-Crafts-type allylation of the arene, followed by hydroamination.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Selected Procedures for the Synthesis of 1-Aryl-2-aminopropanes
Scheme 2
Scheme 2. Allylic Alcohols as Variously Substituted C3 Synthons in Friedel–Crafts Reactions
Scheme 3
Scheme 3. Synthesis of 1-Mesityl-2-sulfonylamino-propanes 1bh,
Reaction conditions: allyl alcohol (1.0 equiv), sulfonamide (2.0 equiv), mesitylene (5.0 equiv), Cu(OTf)2 (10 mol %), xantphos (20 mol %), and chlorobenzene as the solvent (0.25 M), 75 °C in an oil bath for 24 h. Isolated yields.
Scheme 4
Scheme 4. Arylation/Hydroamination with Different Hydrocarbons,
Reaction conditions: allyl alcohol (1.0 equiv), sulfonamide (2.0 equiv), hydrocarbons (5.0 equiv), Cu(OTf)2 (10 mol %), xantphos (20 mol %), and chlorobenzene as the solvent (0.25 M), 75 °C in an oil bath for 24 h. Isolated yields.
Scheme 5
Scheme 5. Arylation/Hydroamination with Different Arenes,
13a only observed by NMR and not isolated pure. 13b isolated with 39% yield. Reaction conditions: allyl alcohol (1.0 equiv), tosylamide (2.0 equiv), arene (5.0 equiv), Cu(OTf)2 (10 mol %), xantphos (20 mol %), and chlorobenzene as the solvent (0.25 M), 75 °C in an oil bath for 24 h. Isolated yields.
Scheme 6
Scheme 6. Proposed Mechanism for Arylation/Hydroamination of Allyl Alcohol
Scheme 7
Scheme 7. Variation on the Nature of the Alcohol,
Reaction conditions: allyl alcohol (1.0 equiv), sulfonamide (2.0 equiv), mesitylene (5.0 equiv), Cu(OTf)2 (10 mol %), xantphos (20 mol %), and chlorobenzene as the solvent (0.25 M), 75 °C in an oil bath for 24 h. Isolated yields.
Scheme 8
Scheme 8. Key Intermediates for Arylation/Hydroamination of Butenol Substrates

References

    1. Pelletier S. W.Chemistry of Alkaloids; Van Nostrand Reinhold: New York, 1970.
    2. Leake C. D.The Amphetamines: Their Actions and Uses; Charles C. Thomas Co.: Springfield, 1958.
    3. Testa B.; Salvesen B. J. Quantitative structure-activity relationships in drug metabolism and disposition. Pharmacokinetics of N-substituted amphetamines in humans. J. Pharm. Sci. 1980, 69, 497–501. 10.1002/jps.2600690505. - DOI - PubMed
    4. Jian-min C.; Zhi-yuan W.; Shi-xuan W.; Rui S.; Rui S.; Ning W.; Ning W.; Jin L. Effects of Lisdexamfetamine, a Prodrug of D-Amphetamine, on Locomotion, Spatial Cognitive Processing and Neurochemical Profiles in Rats: A Comparison With Immediate-Release Amphetamine. Front. Psychiatry 2022, 13, 88557410.3389/fpsyt.2022.885574. - DOI - PMC - PubMed
    5. Nieddu M.; Baralla E.; Pasciu V.; Rimoli M. G.; Boatto G. Cross-reactivity of commercial immunoassays for screening of new amphetamine designer drugs. A review. J. Pharm. Biomed. Anal. 2022, 218, 11486810.1016/j.jpba.2022.114868. - DOI - PubMed
    1. Imm S.; Bahn S.; Neubert L.; Neumann H.; Beller M. An Efficient and General Synthesis of Primary Amines by Ruthenium-Catalyzed Amination of Secondary Alcohols with Ammonia. Angew. Chem., Int. Ed. 2010, 49, 8126–8129. 10.1002/anie.201002576. - DOI - PubMed
    2. Muñoz L.; Rodriguez A. M.; Rosell G.; Bosch M. P.; Guerrero A. Enzymatic enantiomeric resolution of phenylethylamines structurally related to amphetamine. Org. Biomol. Chem. 2011, 9, 8171–8177. 10.1039/c1ob06251d. - DOI - PubMed
    3. Jagadeesh R. V.; Murugesan K.; Alshammari A. S.; Neumann H.; Pohl M.-M.; Radnik J.; Beller M. MOF-Derived cobalt nanoparticles catalyze a general synthesis of amine. Science 2017, 358, 326–332. 10.1126/science.aan6245. - DOI - PubMed
    4. González-Martínez D.; Gotor V.; Gotor-Fernández V. Stereoselective Synthesis of 1-Arylpropan-2-amines from Allylbenzenes through a Wacker-Tsuji Oxidation-Biotransamination Sequential Process. Adv. Synth. Catal. 2019, 361, 2582–2593. 10.1002/adsc.201900179. - DOI
    5. Albarrán-Velo J.; Gotor-Fernández V.; Lavandera I. Markovnikov Wacker-Tsuji Oxidation of Allyl(hetero)arenes and Application in a One-Pot Photo-Metal-Biocatalytic Approach to Enantioenriched Amines and Alcohols. Adv. Synth. Catal. 2021, 363, 4096–4108. 10.1002/adsc.202100351. - DOI
    1. Griffith R. C.; Gentile R. J.; Davidson T. A.; Scott F. L. Convenient One-Step Synthesis of N-Substituted a-Methylphenylamines via Aminomercuration-Demercuration. J. Org. Chem. 1979, 44, 3580–3583. 10.1021/jo01334a031. - DOI
    2. Hartung C. G.; Breindl C.; Tillack A.; Beller M. A Base-Catalyzed Domino-Isomerization-Hydroamination Reaction - A New Synthetic Route to Amphetamines. Tetrahedron 2000, 56, 5157–5162. 10.1016/S0040-4020(00)00436-1. - DOI
    3. Utsunomiya M.; Hartwig J. F. Ruthenium-catalyzed anti-markovnikov hydroamination of vinylarenes. J. Am. Chem. Soc. 2004, 126, 2702–2703. 10.1021/ja031542u. - DOI - PubMed
    4. Jaspers D.; Kubiak R.; Doye S. Recyclable Gallium as Catalyst Precursor for a Convenient and Solvent-Free Method for the Intermolecular Addition of Sulfonamides to Alkenes. Synlett 2010, 8, 1268–1272.
    5. Giner X.; Nájera C.; Kovács G.; Lledós A.; Ujaque G. Gold versus Silver-Catalyzed Intermolecular Hydroaminations of Alkenes and Dienes. Adv. Synth. Catal. 2011, 353, 3451–3466. 10.1002/adsc.201100478. - DOI
    1. Foschi F.; Loro C.; Sala R.; Oble J.; Lo Presti L.; Beccalli E. M.; Poli G.; Broggini G. Intramolecular Aminoazidation of Unactivated Terminal Alkenes by Palladium-Catalyzed Reactions with Hydrogen Peroxide as the Oxidant. Org. Lett. 2020, 22, 1402–1406. 10.1021/acs.orglett.0c00010. - DOI - PubMed
    2. Giofrè S.; Loro C.; Molteni L.; Castellano C.; Contini A.; Nava D.; Broggini G.; Beccalli E. M. Copper(II)-Catalyzed Aminohalogenation of Alkynyl Carbamates. Eur. J. Org. Chem. 2021, 2021, 1750–1757. 10.1002/ejoc.202100202. - DOI
    3. Loro C.; Molteni L.; Papis M.; Beccalli E. M.; Nava D.; Lo Presti L.; Brenna S.; Colombo G.; Foschi F.; Broggini G. Direct Synthesis of Fluorescent Oxazolo-phenoxazines by Copper-Catalyzed/Hypervalent Iodine(III)-Mediated Dimerization/Cyclization of 2-Benzylamino-phenols. J. Org. Chem. 2022, 87, 1032–1042. 10.1021/acs.joc.1c02329. - DOI - PubMed
    1. Loro C.; Oble J.; Foschi F.; Papis M.; Beccalli E. M.; Giofrè S.; Poli G.; Broggini G. Acid-mediated decarboxylative C-H coupling between arenes and O-allyl carbamates. Org. Chem. Front. 2022, 9, 1711–1718. 10.1039/D2QO00114D. - DOI