Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Oct 11;123(19):11269-11335.
doi: 10.1021/acs.chemrev.3c00158. Epub 2023 Sep 26.

Electrochemical Late-Stage Functionalization

Affiliations
Review

Electrochemical Late-Stage Functionalization

Yulei Wang et al. Chem Rev. .

Abstract

Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Opportunities for Electrochemical Late-Stage Functionalization Strategies in Drug Discovery
Scheme 2
Scheme 2. Electrochemical Rhodium-Catalyzed Late-Stage C(sp2)–H Methylation
Scheme 3
Scheme 3. Electrochemical Rhodium-Catalyzed Late-Stage C(sp2)–H Alkylation
Scheme 4
Scheme 4. Electrochemical Controlled C(sp2)–H Late-Stage Trifluoromethylation and Difluoromethylation
Scheme 5
Scheme 5. Electrochemical Iridium-Catalyzed Late-Stage C(sp2)–H Alkynylation
Scheme 6
Scheme 6. Electrochemical Late-Stage C(sp2)–H Carboxylation with CO2
Scheme 7
Scheme 7. Electrochemical Late-Stage C(sp2)–H Hydroxylation
Scheme 8
Scheme 8. Electrochemical Late-Stage C–H Acyloxylation of Tyrosine-Containing Peptides
Reproduced with permission from ref (162). Copyright 2022, Royal Society of Chemistry.
Scheme 9
Scheme 9. Electro-oxidative C–H Alkoxylation of Arenes with Secondary Alcohols
Scheme 10
Scheme 10. Electrochemical Late-Stage Aminations
Scheme 11
Scheme 11. Electrochemical Late-Stage Nitrogenation
Scheme 12
Scheme 12. Electrochemical Peptide and Protein Modification at Tyrosine
Scheme 13
Scheme 13. Selective Peptide Modification at Tyrosine Using N-Methyl Luminol and 1-Methyl-4-Phenylurazole
Scheme 14
Scheme 14. Electrochemical Late-Stage C–H Nitrogenation of Tyrosine-Containing Peptides
Reproduced with permission from ref (182). Copyright 2019, Royal Society of Chemistry.
Scheme 15
Scheme 15. Electrocatalytic Coupling Reactions of Caffeine with Dialkylphosphites
Scheme 16
Scheme 16. Electrochemical Rhodium-Catalyzed C(sp2)–H Phosphorylation
Scheme 17
Scheme 17. Electrochemical Late-Stage C(sp2)–H Phosphorylation in Continuous Flow
Scheme 18
Scheme 18. Ruthenaelectro-Catalyzed meta-C–H Bromination with HBr
Scheme 19
Scheme 19. Electrochemical Late-Stage Bromination of Drug Molecules with NaBr
Scheme 20
Scheme 20. Paired Electrocatalysis for the Preparation of Aryl Chlorides Using DCE
Scheme 21
Scheme 21. Electrochemical Late-Stage C(sp2)–H Iodination of Tyrosine-Containing Protein
Scheme 22
Scheme 22. Rhodaelectro-Catalyzed Peptide Late-Stage Labeling via Formyl C–H Activation
Reproduced with permission from ref (221). Copyright 2021, Springer Nature.
Scheme 23
Scheme 23. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan-Containing Peptides
Scheme 24
Scheme 24. Electrochemical Oxidative Macrocyclization for the Synthesis of DZ-2384
Scheme 25
Scheme 25. Proposed Mechanism for Electrochemical Benzylic C(sp3)–H Functionalization
Scheme 26
Scheme 26. Electrochemical Late-Stage Oxidation of Various Methylarenes
Scheme 27
Scheme 27. NHPI Mediated Late-Stage Benzylic Oxidation of Methylarenes
Scheme 28
Scheme 28. eLSF by Benzylic C–H Amination
Scheme 29
Scheme 29. DDQ-Mediated Late-Stage Benzylic C–H Azolation
Scheme 30
Scheme 30. Electrochemical Late-Stage Benzylic C–H Azolation
Scheme 31
Scheme 31. Electrochemical Late-Stage Benzylic C–H Isothiocyanation
Scheme 32
Scheme 32. Electrochemical Late-Stage Benzylic C–H Fluorination
Scheme 33
Scheme 33. Electrochemical Late-Stage Benzylic C–H Bonds Oxidation to Form Ketones
Scheme 34
Scheme 34. Electrochemical Late-Stage Allylic C(sp3)–H Oxidation
Scheme 35
Scheme 35. Electrochemical Late-Stage Allylic C(sp3)–H Amination
Scheme 36
Scheme 36. Electrochemical Dehydrogenative Cross-Coupling of Ketones with Xanthenes (66)
Scheme 37
Scheme 37. Electrochemically Driven Late-Stage Desaturation of Carbonyl Compounds
Scheme 38
Scheme 38. eLSF by α-C(sp3)–H Functionalization of Carbonyls
Scheme 39
Scheme 39. Electrochemical Late-Stage α-C(sp3)–H Alkenylation of Carbonyls
Scheme 40
Scheme 40. Electrochemical Late-Stage α-Methylation of Amines
Scheme 41
Scheme 41. Electrochemically Driven Desaturative β-C(sp3)–H Functionalization of Amines
Scheme 42
Scheme 42. Electrochemical Late-Stage α-C(sp3)–H Acyloxylation of Sulfides
Scheme 43
Scheme 43. Electrochemical Late-Stage Oxidation of Unactivated C(sp3)–H Bonds
Scheme 44
Scheme 44. Electrochemical Late-Stage C(sp3)–H Azidation
Scheme 45
Scheme 45. Electrochemical Palladium-Catalyzed Aminocarbonylation of Terminal Alkynes
Scheme 46
Scheme 46. Electrochemical Palladium-Catalyzed Oxidative Sonogashira–Hagihara Carbonylation of Arylhydrazines and Alkynes
Scheme 47
Scheme 47. Electrochemical Gold-Catalyzed Oxidative C(sp)–C(sp2) Coupling
Scheme 48
Scheme 48. Electro-oxidative Chlorotrifluoromethylation of Olefins
Scheme 49
Scheme 49. Electrochemical Cobalt-Catalyzed Late-Stage Hydroetherification of Olefins
Scheme 50
Scheme 50. Electrochemical Palladium-Catalyzed Late-Stage Hydrofluorination of Olefins
Scheme 51
Scheme 51. Electro-oxidative Late-Stage Annulation of Biologically Relevant Olefins
Scheme 52
Scheme 52. Electroreductive Cobalt-Catalyzed Late-Stage Functionalization of Olefins and Alkynes
Scheme 53
Scheme 53. Late-Stage Difunctionalization of Steroid Derivatives
Scheme 54
Scheme 54. Electrochemical Selenium-Catalyzed Late-Stage Hydroazolation of Olefins
Scheme 55
Scheme 55. Electrochemical Late-Stage [4 + 2] Annulation of Olefins with Hydroxamic Acid
Scheme 56
Scheme 56. Late-Stage Electrochemical Labelling of Biologically Relevant Olefins
Scheme 57
Scheme 57. Electroreductive Late-Stage Hydrogenation of Olefins with D2O
Scheme 58
Scheme 58. Electroreductive Late-Stage Defluorinative Alkylation of Trifluoromethylated Styrenes
Scheme 59
Scheme 59. Electroreductive Late-Stage Functionalization of Olefins with Deuterochloroform
Scheme 60
Scheme 60. Electrochemical Synthesis of Ynones
Scheme 61
Scheme 61. Nickel-Catalyzed Electrochemical Amination of Aryl Halides
Scheme 62
Scheme 62. Nickel-Catalyzed Electrochemical Amination with Weak N-Centered Nucleophiles
Scheme 63
Scheme 63. Ni-Catalyzed Late-Stage Fluoroalkylation of Aryl Iodides
Scheme 64
Scheme 64. Electrochemical Nickel-Catalyzed Deoxygenative Thiolation Reactions
Scheme 65
Scheme 65. Nickel-Catalyzed Late-Stage Aminomethylation of Aryl Bromides
Scheme 66
Scheme 66. Electrochemical Late-Stage Borylation of Alkyl Halides
Scheme 67
Scheme 67. Electrochemically Driven Late-Stage C(sp3)–C(sp3) Bond Formation
Scheme 68
Scheme 68. Electrochemical Late-Stage Deuteration of Alkyl Halides
Scheme 69
Scheme 69. Electrochemical Carboxylation of Aryl Halides
Scheme 70
Scheme 70. Decarboxylative Synthesis of Sterically Hindered Ethers
Scheme 71
Scheme 71. Electrochemical Decarboxylative Functionalization of Bioactive Carboxylic Acids
Scheme 72
Scheme 72. Late-Stage Modification through Electrochemical Nozaki–Hiyama–Kishi Reaction
Scheme 73
Scheme 73. Plausible Mechanism for Electrochemical NHK Reaction
Scheme 74
Scheme 74. Electrochemical Synthesis of Peptides
Scheme 75
Scheme 75. Electrochemical Decarboxylative Functionalization of Peptides
Scheme 76
Scheme 76. Electrochemical Decarboxylative Modification of C-Terminal Peptides
Scheme 77
Scheme 77. Electrochemical Decarboxylative Aromatization of C-Terminal Hydroxyproline Containing Peptides
Scheme 78
Scheme 78. Electroreductive Nickel-Catalyzed Decarboxylative C(sp3)–C(sp3) Bond Formation
Scheme 79
Scheme 79. Late-Stage Dehydroxylative Halogenation and Alkoxylation
Scheme 80
Scheme 80. Electrochemical Late-Stage Dehydroxylative Azolation
Scheme 81
Scheme 81. Electrochemical Transition-Metal Free Reduction of Epoxides
Scheme 82
Scheme 82. Electrochemical Transition-Metal Free Carboxylation of Epoxides
Scheme 83
Scheme 83. Electrochemical Late-Stage Birch Reduction
Scheme 84
Scheme 84. Selective Reduction of Phthalimides under Alternating Current
Scheme 85
Scheme 85. eLSF of Silylated Amino Acids
Scheme 86
Scheme 86. Electrochemical Synthesis of C-Glycosides
Scheme 87
Scheme 87. Electrochemical Construction of Disulfide Linkages in Peptides
Scheme 88
Scheme 88. Selective C-5 Functionalization of Proline and Analogues
Scheme 89
Scheme 89. Selective C–O/O–H Metathesis under Alternating Current
Scheme 90
Scheme 90. Electroauxiliary-Assisted Late-Stage Functionalization of Peptides
Scheme 91
Scheme 91. Photoelectrochemical C(sp2)–H Trifluoromethylation via Minisci-Type Reactions
Scheme 92
Scheme 92. Photoelectrochemical C–H Alkylation via Minisci Reactions
Scheme 93
Scheme 93. Photoelectrochemical Decarboxylative C–H Alkylation
Scheme 94
Scheme 94. Photoelectrochemical C–H Alkylation with Alkanes
Scheme 95
Scheme 95. Photoelectrochemical C–H Alkylation with Bench-Stable Katritzky Salts
Scheme 96
Scheme 96. Photoelectrochemical C–H Silylation of Heteroarenes
Scheme 97
Scheme 97. Photoelectrochemical Hydroxylation of Aryl C–H bonds
Scheme 98
Scheme 98. Photoelectrochemical Diamination of Vicinal C–H Bond
Scheme 99
Scheme 99. Photoelectrochemical Amination of Benzylic C(sp3)–H Bond
Scheme 100
Scheme 100. Photoelectrocatalytic Multiple C–H Bonds Oxygenations
Scheme 101
Scheme 101. Photoelectrochemical Manganese-Catalyzed C(sp3)–H Azidation
Scheme 102
Scheme 102. Photoelectrochemical Asymmetric Cyanation of Benzylic C–H Bonds
Scheme 103
Scheme 103. Photoelectrochemical Acetoxyhydroxylation of Aryl Olefins
Scheme 104
Scheme 104. Photoelectrocatalytic Nucleophilic Aromatic Substitution Reaction
Scheme 105
Scheme 105. Photoelectrochemical C(sp3)–O Cleavages of Phosphinated Alcohols to Carbanions
Scheme 106
Scheme 106. Photoelectrochemical Asymmetric Decarboxylative Cyanation

Similar articles

Cited by

References

    1. Guillemard L.; Kaplaneris N.; Ackermann L.; Johansson M. J. Late-Stage C–H Functionalization Offers New Opportunities in Drug Discovery. Nat. Rev. Chem. 2021, 5, 522–545. 10.1038/s41570-021-00300-6. - DOI - PubMed
    1. Lasso J. D.; Castillo-Pazos D. J.; Li C.-J. Green Chemistry Meets Medicinal Chemistry: A Perspective on Modern Metal-Free Late-Stage Functionalization Reactions. Chem. Soc. Rev. 2021, 50, 10955–10982. 10.1039/D1CS00380A. - DOI - PubMed
    1. Dominguez-Huerta A.; Dai X.-J.; Zhou F.; Querard P.; Qiu Z.; Ung S.; Liu W.; Li J.; Li C.-J. Exploration of New Reaction Tools for Late-Stage Functionalization of Complex Chemicals. Can. J. Chem. 2019, 97, 67–85. 10.1139/cjc-2018-0357. - DOI
    1. Cernak T.; Dykstra K. D.; Tyagarajan S.; Vachal P.; Krska S. W. The Medicinal Chemist’s Toolbox for Late Stage Functionalization of Drug-Like Molecules. Chem. Soc. Rev. 2016, 45, 546–576. 10.1039/C5CS00628G. - DOI - PubMed
    1. Moir M.; Danon J. J.; Reekie T. A.; Kassiou M. An Overview of Late-Stage Functionalization in Today’s Drug Discovery. Expert Opin. Drug Discovery 2019, 14, 1137–1149. 10.1080/17460441.2019.1653850. - DOI - PubMed