Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting
- PMID: 37752753
- PMCID: PMC10667810
- DOI: 10.1002/advs.202303106
Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting
Abstract
Despite achievements in the remarkable photoelectrochemical (PEC) performance of photoelectrodes based on organometal halide perovskites (OHPs), the scaling up of small-scale OHP-based PEC systems to large-scale systems remains a great challenge for their practical application in solar water splitting. Significant resistive losses and intrinsic defects are major obstacles to the scaling up of OHP-based PEC systems, leading to the PEC performance degradation of large-scale OHP photoelectrodes. Herein, a scalable design of the OHP-based PEC systems by modularization of the optimized OHP photoelectrodes exhibiting a high solar-to-hydrogen conversion efficiency of 10.4% is suggested. As a proof-of-concept, the OHP-based PEC module achieves an optimal PEC performance by avoiding major obstacles in the scaling up of the OHP photoelectrodes. The constructed OHP module is composed of a total of 16 OHP photoelectrodes, and a photocurrent of 11.52 mA is achieved under natural sunlight without external bias. The successful operation of unassisted solar water splitting using the OHP module without external bias can provide insights into the design of scalable OHP-based PEC systems for future practical application and commercialization.
Keywords: module; organometal halide perovskite; photoelectrochemical water splitting; scalable; unassisted solar water splitting.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Exploratory Study of Zn xPbO y Photoelectrodes for Unassisted Overall Solar Water Splitting.ACS Appl Mater Interfaces. 2018 Apr 4;10(13):10918-10926. doi: 10.1021/acsami.8b00421. Epub 2018 Mar 26. ACS Appl Mater Interfaces. 2018. PMID: 29578676
-
Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.Angew Chem Int Ed Engl. 2020 Jan 2;59(1):136-152. doi: 10.1002/anie.201900292. Epub 2019 Aug 7. Angew Chem Int Ed Engl. 2020. PMID: 30790407 Review.
-
Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites.Materials (Basel). 2020 Jan 3;13(1):210. doi: 10.3390/ma13010210. Materials (Basel). 2020. PMID: 31947866 Free PMC article. Review.
-
Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.Nano Lett. 2015 Jun 10;15(6):3833-9. doi: 10.1021/acs.nanolett.5b00616. Epub 2015 May 5. Nano Lett. 2015. PMID: 25942281
-
Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.Nanomicro Lett. 2020 Nov 13;13(1):24. doi: 10.1007/s40820-020-00545-8. Nanomicro Lett. 2020. PMID: 34138209 Free PMC article. Review.
Cited by
-
Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes.Nat Commun. 2025 Mar 19;16(1):2701. doi: 10.1038/s41467-025-58000-4. Nat Commun. 2025. PMID: 40108174 Free PMC article.
-
Unveiling Formation Pathways of Ternary I-III-VI CuInS2 Quantum Dots and Their Effect on Photoelectrochemical Hydrogen Generation.Adv Sci (Weinh). 2025 Aug;12(31):e00829. doi: 10.1002/advs.202500829. Epub 2025 May 28. Adv Sci (Weinh). 2025. PMID: 40434047 Free PMC article.
-
Selective reduction in epitaxial SrFe0.5Co0.5O2.5 and its reversibility.Nat Commun. 2025 Aug 15;16(1):7391. doi: 10.1038/s41467-025-62612-1. Nat Commun. 2025. PMID: 40817324 Free PMC article.
-
Recent Research Progresses and Challenges for Practical Application of Large-Scale Solar Hydrogen Production.Molecules. 2024 Dec 20;29(24):6003. doi: 10.3390/molecules29246003. Molecules. 2024. PMID: 39770092 Free PMC article. Review.
-
Halide Perovskites for Photoelectrochemical Water Splitting and CO2 Reduction: Challenges and Opportunities.ACS Catal. 2024 Apr 16;14(9):6603-6622. doi: 10.1021/acscatal.3c06040. eCollection 2024 May 3. ACS Catal. 2024. PMID: 38721375 Free PMC article. Review.
References
-
- Hosenuzzaman M., Rahim N. A., Selvaraj J., Hasanuzzaman M., Malek A. B. M. A., Nahar A., Renewable Sustainable Energy Rev. 2015, 41, 284.
-
- Polman A., Knight M., Garnett E. C., Ehrler B., Sinke W. C., Science 2016, 352, aad4424. - PubMed
-
- Kim J. H., Hansora D., Sharma P., Jang J. W., Lee J. S., Chem. Soc. Rev. 2019, 48, 1908. - PubMed
-
- Cao S., Piao L., Angew. Chem., Int. Ed. 2020, 59, 18312. - PubMed
-
- Yang W., Park J., Kwon H.‐C., Hutter O. S., Phillips L. J., Tan J., Lee H., Lee J., Tilley S. D., Major J. D., Moon J., Energy Environ. Sci. 2020, 13, 4362.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials