Glycine fermentation by C. difficile promotes virulence and spore formation, and is induced by host cathelicidin
- PMID: 37754683
- PMCID: PMC10580938
- DOI: 10.1128/iai.00319-23
Glycine fermentation by C. difficile promotes virulence and spore formation, and is induced by host cathelicidin
Abstract
Clostridioides difficile is a leading cause of antibiotic-associated diarrheal disease. C. difficile colonization, growth, and toxin production in the intestine is strongly associated with its ability to use amino acids to generate energy, but little is known about the impact of specific amino acids on C. difficile pathogenesis. The amino acid glycine is enriched in the dysbiotic gut and is suspected to contribute to C. difficile infection. We hypothesized that the use of glycine as an energy source contributes to colonization of the intestine and pathogenesis of C. difficile. To test this hypothesis, we deleted the glycine reductase (GR) genes grdAB, rendering C. difficile unable to ferment glycine, and investigated the impact on growth and pathogenesis. Our data show that the grd pathway promotes growth, toxin production, and sporulation. Glycine fermentation also had a significant impact on toxin production and pathogenesis of C. difficile in the hamster model of disease. Furthermore, we determined that the grd locus is regulated by host cathelicidin (LL-37) and the cathelicidin-responsive regulator, ClnR, indicating that the host peptide signals to control glycine catabolism. The induction of glycine fermentation by LL-37 demonstrates a direct link between the host immune response and the bacterial reactions of toxin production and spore formation.
Keywords: Clostridioides; Clostridium difficile; LL-37; Stickland metabolism; cathelicidin; cationic antimicrobial peptides; glycine.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13. J Bacteriol. 2022. PMID: 35862761 Free PMC article.
-
Proline-dependent regulation of Clostridium difficile Stickland metabolism.J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7. J Bacteriol. 2013. PMID: 23222730 Free PMC article.
-
Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model.mSphere. 2025 Feb 25;10(2):e0104924. doi: 10.1128/msphere.01049-24. Epub 2025 Jan 16. mSphere. 2025. PMID: 39817755 Free PMC article.
-
Food for thought-The link between Clostridioides difficile metabolism and pathogenesis.PLoS Pathog. 2023 Jan 5;19(1):e1011034. doi: 10.1371/journal.ppat.1011034. eCollection 2023 Jan. PLoS Pathog. 2023. PMID: 36602960 Free PMC article. Review.
-
Clostridioides difficile spore: coat assembly and formation.Emerg Microbes Infect. 2022 Dec;11(1):2340-2349. doi: 10.1080/22221751.2022.2119168. Emerg Microbes Infect. 2022. PMID: 36032037 Free PMC article. Review.
Cited by
-
Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota.NPJ Biofilms Microbiomes. 2024 Sep 17;10(1):86. doi: 10.1038/s41522-024-00551-3. NPJ Biofilms Microbiomes. 2024. PMID: 39284817 Free PMC article.
-
New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation.Gut Microbes. 2024 Jan-Dec;16(1):2337312. doi: 10.1080/19490976.2024.2337312. Epub 2024 Apr 9. Gut Microbes. 2024. PMID: 38591915 Free PMC article. Review.
-
Proline Stickland fermentation supports C. difficile spore maturation.Appl Environ Microbiol. 2025 Jul 23;91(7):e0055125. doi: 10.1128/aem.00551-25. Epub 2025 Jun 4. Appl Environ Microbiol. 2025. PMID: 40464574 Free PMC article.
-
The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia.PLoS Pathog. 2024 Feb 8;20(2):e1012001. doi: 10.1371/journal.ppat.1012001. eCollection 2024 Feb. PLoS Pathog. 2024. PMID: 38330058 Free PMC article.
-
The current riboswitch landscape in Clostridioides difficile.Microbiology (Reading). 2024 Oct;170(10):001508. doi: 10.1099/mic.0.001508. Microbiology (Reading). 2024. PMID: 39405103 Free PMC article. Review.
References
-
- Fletcher JR, Pike CM, Parsons RJ, Rivera AJ, Foley MH, McLaren MR, Montgomery SA, Theriot CM. 2021. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat Commun 12:462. doi:10.1038/s41467-020-20746-4 - DOI - PMC - PubMed
-
- Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi DS, Grover M, Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G, Kashyap PC. 2018. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med 10:eaam7019. doi:10.1126/scitranslmed.aam7019 - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources