Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 22;11(9):1398.
doi: 10.3390/vaccines11091398.

Anti-S and Anti-N Antibody Responses of COVID-19 Vaccine Recipients

Affiliations

Anti-S and Anti-N Antibody Responses of COVID-19 Vaccine Recipients

Abdel-Ellah Al-Shudifat et al. Vaccines (Basel). .

Abstract

The long-term immunoglobulin responses of COVID-19 vaccinations is important to determine the efficacy of these vaccinations. This study aimed to investigate and compare the long-term immunoglobulin response of COVID-19 vaccination recipients, using anti-S IgG, anti-N IgG, and IgM titer levels. This study included 267 participants, comprising individuals who tested positive for COVID-19 through PCR testing (n = 125), and those who received the Pfizer (n = 133), Sinopharm (n = 112), AstraZeneca (n = 20), or Sputnik (n = 2) vaccines. Female participants comprised the largest share of this study (n = 147, 55.1%). This study found that most participants had positive IgG antibodies, with 96.3% having anti-S IgG and 75.7% having anti-N IgG. Most participants (90.3%) tested negative for anti-N IgM antibodies. Sinopharm-vaccinated individuals exhibited a notably lower rate of positive anti-S IgG (93.8%) and a significantly higher rate of positive anti-N IgG antibodies (91%). Anti-N IgG levels were significantly correlated with the number of prior COVID-19 infections (p = 0.015). Specifically, individuals with a history of four COVID-19 infections had higher anti-N IgG titers (14.1 ± 1.4) than those with only one experience of COVID-19 infection (9.4 ± 7.2). Individuals who were infected with COVID-19 after receiving the vaccine demonstrated higher levels of anti-N IgG, exhibiting a 25% increase in mean titer levels compared to those who were infected prior to vaccination. There was a statistically significant association between anti-N IgG positivity with age (p = 0.034), and smoking status (p = 0.006) of participants. Participants younger than 20 and older than 60 showed the highest positivity rate of anti-N (>90%). Smokers had a low positivity rate of anti-N (68.8%) compared to nonsmokers (83.6%). In conclusion, this study demonstrated that most COVID-19 vaccination recipients had positive IgG antibodies, with differences in the long-term immunoglobulin response depending on the type of vaccine administered and occurrence of COVID-19 infection.

Keywords: AstraZeneca; COVID-19 vaccines; Pfizer–BioNTech; Sinopharm; anti-N; anti-S; antibodies.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Percentages of COVID-19 vaccine types among patients (A) and percentages of COVID-19 infection among different COVID-19 vaccine types and doses (B).
Figure 2
Figure 2
Longitudinal anti-S IgG titers according to vaccine doses: (A) first dose and (B) last dose; immunity type: (C) vaccine only and (D) hybrid; and vaccine type: (E) Sinopharm, (F) Pfizer, (G) AstraZeneca, and (H) mixed.
Figure 3
Figure 3
Longitudinal anti-N IgG titers over days according to immunity type (A) vaccine only and (B) hybrid.

References

    1. Cevik M., Kuppalli K., Kindrachuk J., Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862. doi: 10.1136/bmj.m3862. - DOI - PubMed
    1. WHO Archived: WHO Timeline-COVID-19. [(accessed on 10 March 2023)]. Available online: https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19.
    1. Mascellino M.T., Di Timoteo F., De Angelis M., Oliva A. Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety. Infect. Drug Resist. 2021;14:3459–3476. doi: 10.2147/IDR.S315727. - DOI - PMC - PubMed
    1. Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. - DOI - PMC - PubMed
    1. Carvalho T., Krammer F., Iwasaki A. The first 12 months of COVID-19: A timeline of immunological insights. Nat. Rev. Immunol. 2021;21:245–256. doi: 10.1038/s41577-021-00522-1. - DOI - PMC - PubMed

LinkOut - more resources