Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;177(1):81-95.
doi: 10.1002/aja.1001770110.

Ultrastructural localization of concanavalin A-binding sites in the Golgi apparatus of various types of neurons in rat dorsal root ganglia: functional implications

Ultrastructural localization of concanavalin A-binding sites in the Golgi apparatus of various types of neurons in rat dorsal root ganglia: functional implications

F Malchiodi et al. Am J Anat. 1986 Sep.

Abstract

The localization of concanavalin A (con A) binding sites has been determined at the electron-microscopic level in the six types of neurons (A1, A2, A3, B1, B2, C) of rat dorsal root ganglia. In all ganglion cells, con A stained the plasma membrane, the nuclear envelope, the cisternae of the rough endoplasmic reticulum, and the matrix of some multivesicular bodies. In contrast, the con A reactivity of the Golgi apparatus varied according to cell type. In type B1 and B2 cells and possibly in type A3 cells, the lectin was exclusively located in three or four saccules on the cis side of the Golgi stacks, whereas the TPPase-positive saccules and the trans sacculotubular elements were unstained with con A. In type A1, A2, and C neurons, all Golgi saccules as well as the trans sacculotubular elements were stained with the lectin. These results suggest that different types of glycoproteins were produced in these two groups of neurons. In the type A1, A2, and C cells, the persistence of the lectin reactivity in the TTPase-positive saccules or sacculotubular elements on the trans side of the Golgi stacks suggests the presence of glycoproteins with oligosaccharide side chains rich in alpha-D-mannosyl residues in terminal positions. In contrast, the disappearance of the con A reactivity in equivalent elements of the Golgi stacks in type B1, B2, and A3 cells suggests the addition at this level of other sugar residues characteristic of complex oligosaccharide side chains. The majority of the vesicular elements associated with the Golgi apparatus, as well as lysosomes, were unstained with con A.

PubMed Disclaimer

Similar articles

Cited by

Publication types