Effects of alkalosis on skeletal muscle metabolism and performance during exercise
- PMID: 3777210
- DOI: 10.1152/ajpregu.1986.251.5.R833
Effects of alkalosis on skeletal muscle metabolism and performance during exercise
Abstract
This study examined the effects of extracellular alkalosis on the metabolism and performance of perfused rat hindlimb muscles during electrical stimulation. Three acid-base conditions were used: control (C, normal acid-base state), metabolic alkalosis (MALK, increased bicarbonate concentration), and respiratory alkalosis (RALK, decreased PCO2). A one-pass system was used to perfuse the hindlimb via the femoral artery for 20 min at rest and during 5 min of tetanic stimulation via the sciatic nerve. The isometric tension generated by the gastrocnemius-plantaris-soleus muscle group was recorded. Arterial and venous perfusates were periodically sampled for substrate and metabolite measurements, and muscle samples were taken pre- and postperfusion. Peak isometric tensions in C, MALK, and RALK were similar: 3,367 +/- 107, 3,317 +/- 110, and 3,404 +/- 69 g, respectively. The rate of tension decay was also unaffected by alkalosis and represented 78 and 55% of the peak tension following 2 and 5 min of stimulation, respectively. Muscle O2 uptake, glycogen utilization, and total lactate (La-) production were similar following 5 min of stimulation in all conditions. However, alkalosis resulted in an enhanced La- release from working muscle (peak La- release: C, 15.5 +/- 1.1; MALK, 19.7 +/- 1.6; RALK, 18.3 +/- 2.2 mumol/min), and a 15-20% reduction in intramuscular La- accumulation. Alkalosis had no effect on muscle creatine phosphate and ATP concentrations. Thus, in the perfused rat hindlimb, alkalosis was not associated with changes in tetanic force or glycolysis, but La- release from the working muscle was enhanced by increased extracellular pH and bicarbonate.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
