Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 12;127(40):8365-8373.
doi: 10.1021/acs.jpca.3c04903. Epub 2023 Sep 29.

Isomer-Specific Solvatochromic and Molecular Rotor Properties of ESIPT-Active Push-Pull Fluorescent Chalcone Dyes

Affiliations

Isomer-Specific Solvatochromic and Molecular Rotor Properties of ESIPT-Active Push-Pull Fluorescent Chalcone Dyes

Keenan T Regan et al. J Phys Chem A. .

Abstract

Aromatic chromophores possessing intramolecular hydrogen-bonds that can undergo excited-state intramolecular proton transfer (ESIPT) are critical tools for chemosensing/biosensing applications because they create large Stokes-shifted fluorescence with no overlap with the absorption spectrum to limit back-ground interferences. Classic ESIPT-active fluorophores, such as the 2-(2'-hydroxyphenyl) benzazole (HBX) series (X = NH, O, S), favor a ground-state (GS) enol (E) form that undergoes ESIPT to afford an excited-state (ES) keto (K) tautomer that generates red-shifted fluorescence. Herein, we have attached the HBX moiety to 6-methoxy-indanone (6MI) to create isomeric (ortho and para) ESIPT-active chalcone dyes and have characterized their photophysical properties in polar protic solvents (MeOH and glycerol (Gly)/MeOH mixtures) and a nonpolar aprotic (1,4-dioxane) solvent for comparison. The chalcones favor a GS E structure, which undergoes ESIPT in MeOH, Gly/MeOH mixtures, and dioxane to exclusively afford K emission with large Stokes shifts. The o-isomers possess expanded π-conjugation compared to their p-isomer counterparts, which diminishes their tendency to generate twisted intramolecular charge transfer (TICT) states. Consequently, the o-isomers have greater quantum yields and lack molecular rotor (MR) character with little K emission response to increased solvent viscosity. However, they possess strong positive solvatochromism, displaying significant blue wavelength shifts coupled with turn-on K emission in moving from polar protic MeOH to nonpolar dioxane. In contrast, the p-isomers display MR character with turn-on K emission in 75:25 Gly/MeOH compared to their emission in MeOH (up to 14-fold) due to a strong tendency for TICT. Mechanistic insight into the observed isomer-specific photophysical properties of the ESIPT-active chalcones was obtained through density functional theory (DFT) calculations. Implications for DNA biosensing applications are discussed.

PubMed Disclaimer

LinkOut - more resources