Quantitative approaches for decoding the specificity of the human T cell repertoire
- PMID: 37781387
- PMCID: PMC10539903
- DOI: 10.3389/fimmu.2023.1228873
Quantitative approaches for decoding the specificity of the human T cell repertoire
Abstract
T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.
Keywords: TCR; binding prediction; deep learning; machine learning; pMHC; protein-protein interaction.
Copyright © 2023 Ghoreyshi and George.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures



Similar articles
-
Multi-positive contrastive learning-based cross-attention model for T cell receptor-antigen binding prediction.Comput Methods Programs Biomed. 2025 Aug;268:108797. doi: 10.1016/j.cmpb.2025.108797. Epub 2025 May 10. Comput Methods Programs Biomed. 2025. PMID: 40378554
-
MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions.Appl Bioinformatics. 2006;5(2):111-4. doi: 10.2165/00822942-200605020-00005. Appl Bioinformatics. 2006. PMID: 16722775
-
NetTCR-2.1: Lessons and guidance on how to develop models for TCR specificity predictions.Front Immunol. 2022 Dec 6;13:1055151. doi: 10.3389/fimmu.2022.1055151. eCollection 2022. Front Immunol. 2022. PMID: 36561755 Free PMC article.
-
Modulation of T cell function by TCR/pMHC binding kinetics.Immunobiology. 2006;211(1-2):47-64. doi: 10.1016/j.imbio.2005.09.003. Epub 2006 Jan 4. Immunobiology. 2006. PMID: 16446170 Review.
-
The Enigmatic Nature of the TCR-pMHC Interaction: Implications for CAR-T and TCR-T Engineering.Int J Mol Sci. 2022 Nov 25;23(23):14728. doi: 10.3390/ijms232314728. Int J Mol Sci. 2022. PMID: 36499057 Free PMC article. Review.
Cited by
-
Integration of kinetic data into affinity-based models for improved T cell specificity prediction.Biophys J. 2024 Dec 3;123(23):4115-4122. doi: 10.1016/j.bpj.2024.11.002. Epub 2024 Nov 8. Biophys J. 2024. PMID: 39520055
-
RACER-m leverages structural features for sparse T cell specificity prediction.Sci Adv. 2024 May 17;10(20):eadl0161. doi: 10.1126/sciadv.adl0161. Epub 2024 May 15. Sci Adv. 2024. PMID: 38748791 Free PMC article.
-
T-cell receptor structures and predictive models reveal comparable alpha and beta chain structural diversity despite differing genetic complexity.Commun Biol. 2025 Mar 4;8(1):362. doi: 10.1038/s42003-025-07708-6. Commun Biol. 2025. PMID: 40038394 Free PMC article.
-
Limits on inferring T cell specificity from partial information.Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2408696121. doi: 10.1073/pnas.2408696121. Epub 2024 Oct 7. Proc Natl Acad Sci U S A. 2024. PMID: 39374400 Free PMC article.
-
Exosomal microRNAs in regulation of tumor cells resistance to apoptosis.Biochem Biophys Rep. 2024 Jan 17;37:101644. doi: 10.1016/j.bbrep.2024.101644. eCollection 2024 Mar. Biochem Biophys Rep. 2024. PMID: 38298209 Free PMC article. Review.
References
-
- Mora T, Walczak AM. Quantifying lymphocyte receptor diversity. In: Systems Immunology. (Boca Raton: CRC Press; ) (2018). p. 183–98.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources