Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 17;57(41):15588-15597.
doi: 10.1021/acs.est.3c02197. Epub 2023 Oct 2.

In Situ Measurements of Dynamic Bacteria Transport and Attachment in Heterogeneous Sand-Packed Columns

Affiliations

In Situ Measurements of Dynamic Bacteria Transport and Attachment in Heterogeneous Sand-Packed Columns

Vy Le et al. Environ Sci Technol. .

Abstract

Prevention, mitigation, and regulation of bacterial contaminants in groundwater require a fundamental understanding of the mechanisms of transport and attachment in complex geological materials. Discrepancies in bacterial transport behaviors observed between field studies and laboratory experiments indicate an incomplete understanding of dynamic bacterial transport and immobilization processes in realistic heterogeneous geologic systems. Here, we develop a new experimental approach for in situ quantification of dynamic bacterial transport and attachment distribution in geologic media that relies on radiolabelingEscherichia coliwith positron-emitting radioisotopes and quantifying transport with three-dimensional (3D) positron emission tomography (PET) imaging. Our results indicate that the highest bacterial attachment occurred at the interfaces between sand layers oriented orthogonal to the direction of flow. The predicted bacterial attachment from a 3D numerical model matched the experimental PET results, highlighting that the experimentally observed bacterial transport behavior can be accurately captured with a distribution of a first-order irreversible attachment model. This is the first demonstration of the direct measurement of attachment coefficient distributions from bacterial transport experiments in geologic media and provides a transformational approach to better understand bacterial transport mechanisms, improve model parametrization, and accurately predict how local geologic conditions can influence bacterial fate and transport in groundwater.

Keywords: PET imaging; attachment coefficient; bacteria colloid; column experiment; grain interface; heterogeneity; radioisotope.

PubMed Disclaimer

LinkOut - more resources