Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct:144:102662.
doi: 10.1016/j.artmed.2023.102662. Epub 2023 Sep 7.

Automated ICD coding using extreme multi-label long text transformer-based models

Affiliations
Free article

Automated ICD coding using extreme multi-label long text transformer-based models

Leibo Liu et al. Artif Intell Med. 2023 Oct.
Free article

Abstract

Encouraged by the success of pretrained Transformer models in many natural language processing tasks, their use for International Classification of Diseases (ICD) coding tasks is now actively being explored. In this study, we investigated two existing Transformer-based models (PLM-ICD and XR-Transformer) and proposed a novel Transformer-based model (XR-LAT), aiming to address the extreme label set and long text classification challenges that are posed by automated ICD coding tasks. The Transformer-based model PLM-ICD, which currently holds the state-of-the-art (SOTA) performance on the ICD coding benchmark datasets MIMIC-III and MIMIC-II, was selected as our baseline model for further optimisation on both datasets. In addition, we extended the capabilities of the leading model in the general extreme multi-label text classification domain, XR-Transformer, to support longer sequences and trained it on both datasets. Moreover, we proposed a novel model, XR-LAT, which was also trained on both datasets. XR-LAT is a recursively trained model chain on a predefined hierarchical code tree with label-wise attention, knowledge transferring and dynamic negative sampling mechanisms. Our optimised PLM-ICD models, which were trained with longer total and chunk sequence lengths, significantly outperformed the current SOTA PLM-ICD models, and achieved the highest micro-F1 scores of 60.8 % and 50.9 % on MIMIC-III and MIMIC-II, respectively. The XR-Transformer model, although SOTA in the general domain, did not perform well across all metrics. The best XR-LAT based models obtained results that were competitive with the current SOTA PLM-ICD models, including improving the macro-AUC by 2.1 % and 5.1 % on MIMIC-III and MIMIC-II, respectively. Our optimised PLM-ICD models are the new SOTA models for automated ICD coding on both datasets, while our novel XR-LAT models perform competitively with the previous SOTA PLM-ICD models.

Keywords: Discharge summaries; Extreme multi-label long text classification; ICD coding; MIMIC-II; MIMIC-III; Transformers.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms