Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 May 2;2024(5):108228.
doi: 10.1101/pdb.top108228.

Introduction to CRISPR and Its Use in Drosophila

Affiliations
Review

Introduction to CRISPR and Its Use in Drosophila

Scott Gratz et al. Cold Spring Harb Protoc. .

Abstract

The preeminence of Drosophila genetics has led to key discoveries in biology across a variety of fields and disciplines. The advent of CRISPR gene editing has expanded the toolkit of genetic reagents that can be applied to manipulate and observe genes, RNAs, and proteins in an in vivo context. This review describes CRISPR and its use as a transformative gene editing tool in Drosophila We focus on the canonical pathway in which the Cas9 nuclease is directed to specific sequences by guide RNA (gRNA), where cleavage leads to DNA repair by one of two main cellular pathways: nonhomologous end joining (NHEJ) or homology-directed repair (HDR). The error-prone NHEJ pathway can be appropriated to disrupt targeted sequences, enabling a variety of loss-of-function studies. Induction of the HDR pathway allows precise editing, including defined deletions, the introduction of specific sequence changes, and the incorporation of fluorescent and epitope tags. These approaches have increased the power of Drosophila genetics and been successfully used to conduct in vivo structure-function studies, study disease-associated variants, and follow protein dynamics.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources