Cooperative free energies for nested allosteric models as applied to human hemoglobin
- PMID: 3779009
- PMCID: PMC1329852
- DOI: 10.1016/S0006-3495(86)83514-7
Cooperative free energies for nested allosteric models as applied to human hemoglobin
Abstract
A model is developed for ligand binding to human hemoglobin that describes the detailed cooperative free-energies for each of the ten different ligated (cyanomet) species as observed by Smith and Ackers (Smith, F.R., and G.K. Ackers. 1985. Proc. Natl. Acad. Sci. USA.82:5347-5351). The approach taken here is an application of the general principle of hierarchical levels of allosteric control, or nesting, as suggested by Wyman (Wyman, J. 1972. Curr. Top. Cell. Reg. 6:207-223). The model is an extension of the simple two-state MWC model (Monod, J., J. Wyman, and J.P. Changeux. 1965. J. Mol. Biol. 12:88-118) using the idea of cooperative binding within the T (deoxy) form of the macromolecule, and has recently been described as a "cooperon" model (Di Cera, E. 1985. Ph.D. thesis). The T-state cooperative binding is described using simple interaction rules first devised by Pauling (Pauling, L. 1935. Proc. Natl. Acad. Sci. USA. 21:186-191). In this application three parameters suffice to describe the cooperative free-energies of the 10 ligated species of cyanomet hemoglobin. The redox process in the presence of cyanide, represented as a Hill plot, is simulated from Smith and Ackers' cooperative free-energies and is compared with available electrochemical binding measurements.
Similar articles
-
Subunit hybridization studies of partially ligated cyanomethemoglobins using a cryogenic method. Evidence for three allosteric states.Biophys Chem. 1990 Jan;35(1):97-103. doi: 10.1016/0301-4622(90)80064-e. Biophys Chem. 1990. PMID: 2328279
-
The energetics of ligand-linked subunit assembly in hemoglobin require a third allosteric structure.Biophys Chem. 1990 Aug 31;37(1-3):371-82. doi: 10.1016/0301-4622(90)88036-r. Biophys Chem. 1990. PMID: 2285798
-
Linkage between ligand binding and the dimer-tetramer equilibrium in the Monod-Wyman-Changeux model of hemoglobin.Proc Natl Acad Sci U S A. 1986 Jun;83(11):3796-800. doi: 10.1073/pnas.83.11.3796. Proc Natl Acad Sci U S A. 1986. PMID: 3459157 Free PMC article.
-
Evolution of allosteric models for hemoglobin.IUBMB Life. 2007 Aug-Sep;59(8-9):586-99. doi: 10.1080/15216540701272380. IUBMB Life. 2007. PMID: 17701554 Review.
-
Understanding allosteric and cooperative interactions in enzymes.FEBS J. 2014 Jan;281(2):621-32. doi: 10.1111/febs.12469. Epub 2013 Sep 2. FEBS J. 2014. PMID: 23910900 Review.
Cited by
-
Is allostery a fuzzy concept?FEBS Open Bio. 2024 Jul;14(7):1040-1056. doi: 10.1002/2211-5463.13794. Epub 2024 May 23. FEBS Open Bio. 2024. PMID: 38783588 Free PMC article. Review.
-
Wandering about allostery.Biol Direct. 2024 Aug 8;19(1):64. doi: 10.1186/s13062-024-00502-0. Biol Direct. 2024. PMID: 39113091 Free PMC article.
-
Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation.PLoS Comput Biol. 2010 May 6;6(5):e1000774. doi: 10.1371/journal.pcbi.1000774. PLoS Comput Biol. 2010. PMID: 20463873 Free PMC article.
-
Dissecting the role of interprotomer cooperativity in the activation of oligomeric high-temperature requirement A2 protein.Proc Natl Acad Sci U S A. 2021 Aug 31;118(35):e2111257118. doi: 10.1073/pnas.2111257118. Proc Natl Acad Sci U S A. 2021. PMID: 34446566 Free PMC article.
-
Solution NMR Spectroscopy for the Study of Enzyme Allostery.Chem Rev. 2016 Jun 8;116(11):6323-69. doi: 10.1021/acs.chemrev.5b00541. Epub 2016 Jan 6. Chem Rev. 2016. PMID: 26734986 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources