Long-Term Acetylcholinesterase Depletion Alters the Levels of Key Synaptic Proteins while Maintaining Neuronal Markers in the Aging Zebrafish (Danio rerio) Brain
- PMID: 37793352
- PMCID: PMC10711754
- DOI: 10.1159/000534343
Long-Term Acetylcholinesterase Depletion Alters the Levels of Key Synaptic Proteins while Maintaining Neuronal Markers in the Aging Zebrafish (Danio rerio) Brain
Abstract
Introduction: Interventions targeting cholinergic neurotransmission like acetylcholinesterase (AChE) inhibition distinguish potential mechanisms to delay age-related impairments and attenuate deficits related to neurodegenerative diseases. However, the chronic effects of these interventions are not well described.
Methods: In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity. Long-term depletion of AChE activity was induced by using a mutant zebrafish line, and they were compared with the wildtype group at young and old ages.
Results: Results demonstrated that AChE activity was lower in both young and old mutants, and this decrease coincided with a reduction in ACh content. Additionally, an overall age-related reduction in AChE activity and the AChE/ACh ratio was observed, and this decline was more prominent in wildtype groups. The levels of an immature neuronal marker were upregulated in mutants, while a glial marker showed an overall reduction. Mutants had preserved levels of inhibitory and presynaptic elements with aging, whereas glutamate receptor subunit levels declined.
Conclusion: Long-term AChE activity depletion induces synaptic and cellular alterations. These data provide further insights into molecular targets and adaptive responses following the long-term reduction of AChE activity that was also targeted pharmacologically to treat neurodegenerative diseases in human subjects.
Keywords: Acetylcholinesterase; Aging; Cholinergic system; Neuronal changes; Synapses.
© 2023 The Author(s). Published by S. Karger AG, Basel.
Conflict of interest statement
The authors have no conflicts of interest to declare.
Figures
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
