BEVA primary care clinical guidelines: Diagnosis and management of equine pituitary pars intermedia dysfunction
- PMID: 37795557
- DOI: 10.1111/evj.14009
BEVA primary care clinical guidelines: Diagnosis and management of equine pituitary pars intermedia dysfunction
Abstract
Background: Pituitary pars intermedia dysfunction (PPID) is a prevalent, age-related chronic disorder in equids. Diagnosis of PPID can be challenging because of its broad spectrum of clinical presentations and disparate published diagnostic criteria, and there are limited available treatment options.
Objectives: To develop evidence-based primary care guidelines for the diagnosis and treatment of equine PPID based on the available literature.
Study design: Evidence-based clinical guideline using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework.
Methods: Research questions were proposed by a panel of veterinarians and developed into PICO or another structured format. VetSRev and Veterinary Evidence were searched for evidence summaries, and systematic searches of the NCBI PubMed and CAB Direct databases were conducted using keyword searches in July 2022 and updated in January 2023. The evidence was evaluated using the GRADE framework.
Results and recommendations: The research questions were categorised into four areas: (A) Case selection for diagnostic testing, pre-test probability and diagnostic test accuracy, (B) interpretation of test results, (C) pharmacological treatments and other treatment/management options and (D) monitoring treated cases. Relevant veterinary publications were identified and assessed using the GRADE criteria. The results were developed into recommendations: (A) Case selection for diagnostic testing and diagnostic test accuracy: (i) The prevalence of PPID in equids aged ≥15 years is between 21% and 27%; (ii) hypertrichosis or delayed/incomplete hair coat shedding provides a high index of clinical suspicion for PPID; (iii) the combination of clinical signs and age informs the index of clinical suspicion prior to diagnostic testing; (iv) estimated pre-test probability of PPID should be considered in interpretation of diagnostic test results; (v) pre-test probability of PPID is low in equids aged <10 years; (vi) both pre-test probability of disease and season of testing have strong influence on the ability to diagnose PPID using basal adrenocorticotropic hormone (ACTH) or ACTH after thyrotropin-releasing hormone (TRH) stimulation. The overall diagnostic accuracy of basal ACTH concentrations for diagnosing PPID ranged between 88% and 92% in the autumn and 70% and 86% in the non-autumn, depending on the pre-test probability. Based on a single study, the overall diagnostic accuracy of ACTH concentrations in response to TRH after 30 minutes for diagnosing PPID ranged between 92% and 98% in the autumn and 90% and 94% in the non-autumn, depending on the pre-test probability. Thus, it should be remembered that the risk of a false positive result increases in situations where there is a low pre-test probability, which could mean that treatment is initiated for PPID without checking for a more likely alternative diagnosis. This could compromise horse welfare due to the commencement of lifelong therapy and/or failing to identify and treat an alternative potentially life-threatening condition. (B) Interpretation of diagnostic tests: (i) There is a significant effect of breed on plasma ACTH concentration, particularly in the autumn with markedly higher ACTH concentrations in some but not all 'thrifty' breeds; (ii) basal and/or post-TRH ACTH concentrations may also be affected by latitude/location, diet/feeding, coat colour, critical illness and trailer transport; (iii) mild pain is unlikely to have a large effect on basal ACTH, but caution may be required for more severe pain; (iv) determining diagnostic thresholds that allow for all possible contributory factors is not practical; therefore, the use of equivocal ranges is supported; (v) dynamic insulin testing and TRH stimulation testing may be combined, but TRH stimulation testing should not immediately follow an oral sugar test; (vi) equids with PPID and hyperinsulinaemia appear to be at higher risk of laminitis, but ACTH is not an independent predictor of laminitis risk. (C) Pharmacologic treatments and other treatment/management options: (i) Pergolide improves most clinical signs associated with PPID in the majority of affected animals; (ii) Pergolide treatment lowers basal ACTH concentrations and improves the ACTH response to TRH in many animals, but measures of insulin dysregulation (ID) are not altered in most cases; (iii) chasteberry has no effect on ACTH concentrations and there is no benefit to adding chasteberry to pergolide therapy; (iv) combination of cyproheptadine with pergolide is not superior to pergolide alone; (v) there is no evidence that pergolide has adverse cardiac effects in horses; (vi) Pergolide does not affect insulin sensitivity. (D) Monitoring pergolide-treated cases: (i) Hormone assays provide a crude indication of pituitary control in response to pergolide therapy, however it is unknown whether monitoring of ACTH concentrations and titrating of pergolide doses accordingly is associated with improved endocrinological or clinical outcome; (ii) it is unknown whether monitoring the ACTH response to TRH or clinical signs is associated with an improved outcome; (iii) there is very weak evidence to suggest that increasing pergolide dose in autumn months may be beneficial; (iv) there is little advantage in waiting for more than a month to perform follow-up endocrine testing following initiation of pergolide therapy; there may be merit in performing repeat tests sooner; (v) timing of sampling in relation to pergolide dosing does not confound measurement of ACTH concentration; (vi) there is no evidence that making changes after interpretation of ACTH concentrations measured at certain times of the year is associated with improved outcomes; (vii) evidence is very limited, however, compliance with PPID treatment appears to be poor and it is unclear whether this influences clinical outcome; (viii) evidence is very limited, but horses with clinical signs of PPID are likely to shed more nematode eggs than horses without clinical signs of PPID; it is unclear whether this results in an increased risk of parasitic disease or whether there is a need for more frequent assessment of faecal worm egg counts.
Main limitations: Limited relevant publications in the veterinary scientific literature.
Conclusions: These findings should be used to inform decision-making in equine primary care practice.
Keywords: ACTH; GRADE; TRH; geriatric; horse; insulin; laminitis; pergolide; pituitary.
© 2023 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Similar articles
-
Effects of pituitary pars intermedia dysfunction and Prascend (pergolide tablets) treatment on endocrine and immune function in horses.Domest Anim Endocrinol. 2021 Jan;74:106531. doi: 10.1016/j.domaniend.2020.106531. Epub 2020 Jul 29. Domest Anim Endocrinol. 2021. PMID: 32942194
-
Evaluation of seasonal influences on adrenocorticotropic hormone response to the thyrotropin-releasing hormone stimulation test and its accuracy for diagnosis of pituitary pars intermedia dysfunction.Vet J. 2023 Oct-Dec;300-302:106035. doi: 10.1016/j.tvjl.2023.106035. Epub 2023 Oct 5. Vet J. 2023. PMID: 37802466
-
Evaluation of combined testing to simultaneously diagnose pituitary pars intermedia dysfunction and insulin dysregulation in horses.J Vet Intern Med. 2019 Sep;33(5):2249-2256. doi: 10.1111/jvim.15617. Epub 2019 Sep 9. J Vet Intern Med. 2019. PMID: 31498947 Free PMC article.
-
Diagnosis of equine pituitary pars intermedia dysfunction.Vet J. 2023 Oct-Dec;300-302:106036. doi: 10.1016/j.tvjl.2023.106036. Epub 2023 Oct 6. Vet J. 2023. PMID: 37805159 Review.
-
Efficacy of pergolide for the management of equine pituitary pars intermedia dysfunction: A systematic review.Vet J. 2020 Dec;266:105562. doi: 10.1016/j.tvjl.2020.105562. Epub 2020 Oct 8. Vet J. 2020. PMID: 33323174
Cited by
-
Long-Term Response of Equids With Pituitary Pars Intermedia Dysfunction to Treatment With Pergolide.J Vet Intern Med. 2025 May-Jun;39(3):e70109. doi: 10.1111/jvim.70109. J Vet Intern Med. 2025. PMID: 40317948 Free PMC article.
-
Initial development of a rapid, portable, stall-side ELISA for the measurement of equine adrenocorticotropic hormone.J Vet Diagn Invest. 2025 Jan;37(1):208-211. doi: 10.1177/10406387241285453. Epub 2024 Sep 25. J Vet Diagn Invest. 2025. PMID: 39320416 Free PMC article.
-
Association Between Adrenocorticotropic Hormone Concentration and Clinical Signs of Pituitary Pars Intermedia Dysfunction in Swiss and Austrian Equids.J Vet Intern Med. 2025 Mar-Apr;39(2):e70008. doi: 10.1111/jvim.70008. J Vet Intern Med. 2025. PMID: 40095750 Free PMC article.
References
REFERENCES
-
- McGowan TW, Pinchbeck GP, McGowan CM. Prevalence, risk factors and clinical signs predictive for equine pituitary pars intermedia dysfunction in aged horses. Equine Vet J. 2013;45:74-79.
-
- Tatum RC, McGowan CM, Ireland JL. Evaluation of the sensitivity and specificity of basal plasma adrenocorticotrophic hormone concentration for diagnosing pituitary pars intermedia dysfunction in horses: a systematic review. Vet J. 2021;275:105695.
-
- Meyer JC, Hunyadi LM, Ordonez-Mena JM. The accuracy of ACTH as a biomarker for pituitary pars intermedia dysfunction in horses: a systematic review and meta-analysis. Equine Vet J. 2022;54:457-466.
-
- Tatum RC, McGowan CM, Ireland JL. Efficacy of pergolide for the management of equine pituitary pars intermedia dysfunction: a systematic review. Vet J. 2020;266:105562.
-
- Patel GW, Roderman N, Gehring H, Saad J, Bartek W. Assessing the effect of the surviving sepsis campaign treatment guidelines on clinical outcomes in a community hospital. Ann Pharmacother. 2010;44:1733-1738.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous