Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Dec:172:16-37.
doi: 10.1016/j.actbio.2023.09.048. Epub 2023 Oct 4.

Fatigue behaviour of load-bearing polymeric bone scaffolds: A review

Affiliations
Free article
Review

Fatigue behaviour of load-bearing polymeric bone scaffolds: A review

Hamed Bakhtiari et al. Acta Biomater. 2023 Dec.
Free article

Abstract

Bone scaffolds play a crucial role in bone tissue engineering by providing mechanical support for the growth of new tissue while enduring static and fatigue loads. Although polymers possess favourable characteristics such as adjustable degradation rate, tissue-compatible stiffness, ease of fabrication, and low toxicity, their relatively low mechanical strength has limited their use in load-bearing applications. While numerous studies have focused on assessing the static strength of polymeric scaffolds, little research has been conducted on their fatigue properties. The current review presents a comprehensive study on the fatigue behaviour of polymeric bone scaffolds. The fatigue failure in polymeric scaffolds is discussed and the impact of material properties, topological features, loading conditions, and environmental factors are also examined. The present review also provides insight into the fatigue damage evolution within polymeric scaffolds, drawing comparisons to the behaviour observed in natural bone. Additionally, the effect of polymer microstructure, incorporating reinforcing materials, the introduction of topological features, and hydrodynamic/corrosive impact of body fluids in the fatigue life of scaffolds are discussed. Understanding these parameters is crucial for enhancing the fatigue resistance of polymeric scaffolds and holds promise for expanding their application in clinical settings as structural biomaterials. STATEMENT OF SIGNIFICANCE: Polymers have promising advantages for bone tissue engineering, including adjustable degradation rates, compatibility with native bone stiffness, ease of fabrication, and low toxicity. However, their limited mechanical strength has hindered their use in load-bearing scaffolds for clinical applications. While prior studies have addressed static behaviour of polymeric scaffolds, a comprehensive review of their fatigue performance is lacking. This review explores this gap, addressing fatigue characteristics, failure mechanisms, and the influence of parameters like material properties, topological features, loading conditions, and environmental factors. It also examines microstructure, reinforcement materials, pore architectures, body fluids, and tissue ingrowth effects on fatigue behaviour. A significant emphasis is placed on understanding fatigue damage progression in polymeric scaffolds, comparing it to natural bone behaviour.

Keywords: Biomaterials; Bone scaffold; Fatigue; Polymer; Tissue engineering.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest I hereby declare this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors declare no conflict of interest and the manuscript has been read and approved by all of them. The contents of the paper have not been published previously and is not under consideration by another journal.

LinkOut - more resources