Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 8;14(38):10508-10514.
doi: 10.1039/d3sc03936f. eCollection 2023 Oct 4.

Deaminative ring contraction for the synthesis of polycyclic heteroaromatics: a concise total synthesis of toddaquinoline

Affiliations

Deaminative ring contraction for the synthesis of polycyclic heteroaromatics: a concise total synthesis of toddaquinoline

Emily K Kirkeby et al. Chem Sci. .

Abstract

A concise strategy to prepare polycyclic heteroaromatics involving a deaminative contraction cascade is detailed. The efficient deaminative ring contraction involves the in situ methylation of a biaryl-linked dihydroazepine to form a cyclic ammonium cation that undergoes a base-induced [1,2]-Stevens rearrangement/dehydroamination sequence. The presence of pseudosymmetry guides the retrosynthetic analysis of pyridyl-containing polycyclic heteroaromatics, enabling their construction by the reductive cyclization and deaminative contraction of tertiary amine precursors.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Polycyclic aromatic natural products as motivation for reaction invention: (a) ‘phenanthrene skeleton’ natural products as motivation for reaction invention; (b) nature diversifies scaffolds via tertiary amine rearrangements; (c) recognition of pseudosymmetry guides a convergent retrosynthetic analysis.
Fig. 2
Fig. 2. Deaminative contraction for the synthesis of polycyclic (hetero)aromatics: (a) developed deaminative contraction reactions; (b) a mechanism-based hypothesis.
Fig. 3
Fig. 3. Deaminative contractions for the convergent synthesis of polycyclic aromatics and substituted benzo[h]quinolines: (a) deaminative contraction optimization; (b) accessible polycyclic aromatics; (c) evaluation of electronically perturbed benzo[h]quinolines. nd = not detected.
Fig. 4
Fig. 4. Synthesis of polycyclic aromatics (a) a general strategy to prepare polycyclic heteroaromatics; (b) process scope: the final polycyclic heteroaromatics are shown for each three-step synthesis, the yields for each step are shown in order: build (step 1)-cyclize (step 2)-contract (step 3).
Scheme 1
Scheme 1. A build-cyclize-contract total synthesis of toddaquinoline 3. (a) 3 equiv. KOH, 10 mol% Pd2dba3, 40 mol% Me4t-BuXPhos, 1,4-dioxane/H2O, 100 °C; (b) CF3CO2H, CH2Cl2, rt. dba = dibenzylideneacetone.
Fig. 5
Fig. 5. Functionalization of methyl-substituted benzo[h]quinolines to access aminated benzo[h]quinolines and aza-helicenes: (a) Pd(OAc)2, NBS, CH3CN; (b) NBS, Bz2O2, PhH, 80 °C; (c) add 38 in THF; (d) NiBr2(PPh3)2, Et4NI, Zn, THF, 50 °C; (e) LiI, PO(OMe)3, THF, 65 °C; t-BuOK, 18-C-6, THF, 65 °C.

References

    1. For selected reviews, see:

    2. Kovács A. Vasas A. Hohmann J. Phytochemistry. 2008;69:1084–1110. doi: 10.1016/j.phytochem.2007.12.005. - DOI - PubMed
    3. Qing Z.-X. Yang P. Tang Q. Cheng P. Liu X.-B. Zheng Y. Liu Y.-S. Zeng J.-G. Curr. Org. Chem. 2017;21:1920–1934. doi: 10.2174/1385272821666170207114214. - DOI
    4. Douka M. D. Litinas K. E. Molecules. 2022;27:7256. doi: 10.3390/molecules27217256. - DOI - PMC - PubMed
    1. For selected recent examples, see:

    2. Sahuc M.-E. Sahli R. Rivière C. Pène V. Lavie M. Vandeputte A. Brodin P. Rosenberg A. R. Dubuisson J. Ksouri R. Rouillé Y. Sahpaz S. Séron K. J. Virol. 2019;93:e02009–e02018. doi: 10.1128/JVI.02009-18. - DOI - PMC - PubMed
    3. Patra P. Patra S. Heterocycles. 2023;106:241. doi: 10.3987/REV-22-990. - DOI
    1. For representative total syntheses of substituted polycyclic aromatics including natural products, see:

    2. Kende A. S. Curran D. P. J. Am. Chem. Soc. 1979;101:1857–1864. doi: 10.1021/ja00501a036. - DOI
    3. Wang X. Snieckus V. Tetrahedron Lett. 1991;32:4879–4882. doi: 10.1016/S0040-4039(00)93485-3. - DOI
    4. Wang X. Snieckus V. Tetrahedron Lett. 1991;32:4883–4884. doi: 10.1016/S0040-4039(00)93486-5. - DOI
    5. Hoarau C. Couture A. Cornet H. Deniau E. Grandclaudon P. J. Org. Chem. 2001;66:8064–8069. doi: 10.1021/jo0105944. - DOI - PubMed
    6. Jones S. B. He L. Castle S. L. Org. Lett. 2006;8:3757–3760. doi: 10.1021/ol0613564. - DOI - PubMed
    7. Markey M. D. Fu Y. Kelly T. R. Org. Lett. 2007;9:3255–3257. doi: 10.1021/ol0711974. - DOI - PubMed
    8. Gosselin F. Lau S. Nadeau C. Trinh T. O'Shea P. D. Davies I. W. J. Org. Chem. 2009;74:7790–7797. doi: 10.1021/jo901798d. - DOI - PubMed
    1. Sarkar H. Zerezghi M. Bhattacharyya J. Phytochemistry. 1988;27:3006–3008. doi: 10.1016/0031-9422(88)80714-3. - DOI
    1. Wu Y.-C. Liou J.-Y. Duh C.-Y. Lee S.-S. Lu S.-T. Tetrahedron Lett. 1991;32:4169–4170. doi: 10.1016/S0040-4039(00)79894-7. - DOI