Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jul-Dec;18(12):1413-1428.
doi: 10.1080/17460441.2023.2264766. Epub 2023 Nov 1.

Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease

Affiliations
Review

Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease

Juan D Sánchez et al. Expert Opin Drug Discov. 2023 Jul-Dec.

Abstract

Introduction: Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's.

Areas covered: This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases.

Expert opinion: The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.

Keywords: Alzheimer’s disease; benzopyrane scaffold; benzothiazole; heterocyclic building blocks; multi-target direct ligand; pyridine scaffold; small drug.

PubMed Disclaimer

LinkOut - more resources