Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov:499:153641.
doi: 10.1016/j.tox.2023.153641. Epub 2023 Oct 6.

Deficiency of spns1 exacerbates per- and polyfluoroalkyl substances mediated hepatic toxicity and steatosis in zebrafish (Danio rerio)

Affiliations

Deficiency of spns1 exacerbates per- and polyfluoroalkyl substances mediated hepatic toxicity and steatosis in zebrafish (Danio rerio)

Sashi Gadi et al. Toxicology. 2023 Nov.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are man-made long-lasting chemical compounds that are found in everyday household items. Today they occur in the environment as a major group of pollutants. These compounds are broadly used in commercial product preparation such as, for food packaging, nonstick coatings, and firefighting foam. In humans, PFAS can cause immune disorders, impaired fetal development, abnormal skeletal tissue development, osteoarthritis, thyroid dysfunctions, cholesterol changes, affect insulin regulation and lipid metabolism, and are also involved in the development of fatty liver disease. In the current study, we investigated the effect of low, but physiologically relevant, concentrations of perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA) on gene expression markers of an inflammatory response (tnfa, il-1b, il-6, rplp0, edem1, and dnajc3a), unfolded protein response (UPR) (bip, atf4a, atf6, xbp1, and ddit3), senescence (p21, pai1, smp30, mdm2, and baxa), lipogenesis (scd1, acc, srebp1, pparγ, and fasn) and autophagy (p62, atg3, atg7, rab7, lc3b, and becn1) in AB wild-type (+/+), spns1-wt sibling (+/+), (+/-) and spns1 homozygous mutant (-/-) zebrafish embryos. Exposure to PFOA and HFBA (50 and 100 nM) specifically modulated inflammatory, UPR, senescence, lipogenic, and autophagy signaling in spns1-wt (+/+), (+/-), and spns1-mutant (-/-) zebrafish embryos. Furthermore, PFOA, but not HFBA, upregulated lipogenic-related gene expression and enhanced hepatic steatosis in spns1-wt (+/+), (+/-) zebrafish embryos. Combined exposure to PFOA, HFBA, and PFTA differentially expressed inflammatory, senescence, lipogenic, and autophagy-associated gene expression in spns1-mutant (-/-) zebrafish embryos compared with spns1-wt (+/+), (+/-) and AB-wt (+/+) zebrafish embryos. In addition, chronic exposure (∼2 months) to PFOA (120-600 nM) upregulated the expression of hepatic lipogenic and steatosis biomarkers in AB-wt (+/+) zebrafish. Collectively, our data suggest that acute/chronic physiologically relevant concentrations of PFOA upregulate inflammatory, UPR, senescence, and lipogenic signaling in spns1-wt (+/+), (+/-) and spns1-mutant (-/-) zebrafish embryos as well as in two-month-old AB-wt zebrafish, by targeting autophagy and hence induces toxicity that could promote nonalcoholic fatty liver disease.

Keywords: Hepatic steatosis; Nonalcoholic fatty liver disease; Perfluorooctanoic acid (PFOA); Senescence; Unfolded protein response (UPR); Zebrafish (Danio rerio).

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.