Binuclear Complexes Supported by a Tetrapyridyl Ligand with a Bending Anthraquinodimethane Linker
- PMID: 37810407
- PMCID: PMC10557120
- DOI: 10.1021/acsorginorgau.3c00021
Binuclear Complexes Supported by a Tetrapyridyl Ligand with a Bending Anthraquinodimethane Linker
Abstract
A tetrapyridyl ligand with a bending anthraquinodimethane linker has been synthesized, and its complexation with coinage metals has been examined. The treatment of the ligand with Ag(I) and Au(I) cations afforded binuclear complexes, wherein the two metal centers were in close proximity to the inside space of the ligand. X-ray analyses corroborated with theoretical calculations indicated that the ligand has reasonable flexibility toward a bending deformation of the linker moiety to provide a ligand pocket suitable for the proximal binuclear complexes, even though such deformations accompany a non-negligible amount of energetic cost. On the other hand, treatment with 2 equiv of Cu(I) salt afforded a binuclear complex, in which both copper atoms were coordinated at the periphery of the ligand.
© 2023 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures









References
-
-
For recent reviews, see:
- Farley C. M.; Uyeda C. Organic Reactions Enabled by Catalytically Active Metal–Metal Bonds. Trends Chem. 2019, 1, 497–509. 10.1016/j.trechm.2019.04.002. - DOI
- Xiong N.; Zhang G.; Sun X.; Zeng R. Metal-Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chin. J. Chem. 2020, 38, 185–201. 10.1002/cjoc.201900371. - DOI
- Campos J. Bimetallic cooperation across the periodic table. Nat. Rev. Chem. 2020, 4, 696–702. 10.1038/s41570-020-00226-5. - DOI - PubMed
- Chatterjee B.; Chang W. C.; Jena S.; Werlé C. Implementation of Cooperative Designs in Polarized Transition Metal Systems-Significance for Bond Activation and Catalysis. ACS Catal. 2020, 10, 14024–14055. 10.1021/acscatal.0c03794. - DOI
- Wang Q.; Brooks S. H.; Liu T.; Tomson N. C. Tuning metal–metal interactions for cooperative small molecule activation. Chem. Commun. 2021, 57, 2839–2853. 10.1039/D0CC07721F. - DOI - PMC - PubMed
- Govindarajan R.; Deolka S.; Khusnutdinova J. R. Heterometallic bond activation enabled by unsymmetrical ligand scaffolds: bridging the opposites. Chem. Sci. 2022, 13, 14008–14031. 10.1039/D2SC04263K. - DOI - PMC - PubMed
-
-
-
For selected reviews, see:
- Gavrilova A. L.; Bosnich B. Principles of Mononucleating and Binucleating Ligand Design. Chem. Rev. 2004, 104, 349–383. 10.1021/cr020604g. - DOI - PubMed
- Cooper B. G.; Napoline J. W.; Thomas C. M. Catalytic applications of early/late heterobimetallic complexes. Catal. Rev. 2012, 54, 1–40. 10.1080/01614940.2012.619931. - DOI
- Krogman J. P.; Thomas C. M. Metal–metal multiple bonding in C3-symmetric bimetallic complexes of the first row transition metals. Chem. Commun. 2014, 50, 5115–5127. 10.1039/c3cc47537a. - DOI - PubMed
- Buchwalter P.; Rosé J.; Braunstein P. Multimetallic Catalysis Based on Heterometallic Complexes and Clusters. Chem. Rev. 2015, 115, 28–126. 10.1021/cr500208k. - DOI - PubMed
-
-
-
For selected examples of redox active naphthyridine ligands, see:
- Uyeda C.; Farley C. M. Dinickel Active Sites Supported by Redox-Active Ligands. Acc. Chem. Res. 2021, 54, 3710–3719. 10.1021/acs.accounts.1c00424. - DOI - PMC - PubMed
- Zhou Y. Y.; Hartline D. R.; Steiman T. J.; Fanwick P. E.; Uyeda C. Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-active Ligand. Inorg. Chem. 2014, 53, 11770–11777. 10.1021/ic5020785. - DOI - PubMed
- Zhou Y.-Y.; Uyeda C. Catalytic reductive [4 + 1]-cycloadditions of vinylidenes and dienes. Science 2019, 363, 857–862. 10.1126/science.aau0364. - DOI - PMC - PubMed
-
-
-
For examples of tetrapyridyl naphthyridine ligands:
- Desnoyer A. N.; Nicolay A.; Rios P.; Ziegler M. S.; Tilley T. D. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc. Chem. Res. 2020, 53, 1944–1956. 10.1021/acs.accounts.0c00382. - DOI - PubMed
- Ullman A. M.; Brodsky C. N.; Li N.; Zheng S. L.; Nocera D. G. Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. J. Am. Chem. Soc. 2016, 138, 4229–4236. 10.1021/jacs.6b00762. - DOI - PubMed
- Isaac J. A.; Thibon-Pourret A.; Durand A.; Philouze C.; Le Poul N.; Belle C. High-valence CuIICuIII species in action: Demonstration of aliphatic C–H bond activation at room temperature. Chem. Commun. 2019, 55, 12711–12714. 10.1039/C9CC04422A. - DOI - PubMed
-
-
-
For other types of naphthylidine ligands, see:
- Tikkanen W. R.; Binamira-Soriaga E.; Kaska W. C.; Ford P. C. Crescent-Shaped Dinuclear Complexes: A Dirhodium(II) Complex of the New Tetradentate Ligand 2,7-Bis(2-pyridyl)-1,8-naphthyridine (bpnp), [Rh2(bpnp)(μ-CH3CO2)3](PF6). Inorg. Chem. 1983, 22, 1147–1148. 10.1021/ic00149a031. - DOI
- Collin J. P.; Jouaiti A.; Sauvage J. P.; Kaska W. C.; McLoughlin M. A.; Keder N. L.; Harrison W. T. A.; Stucky G. D. Synthesis and Electrochemical Characterization of Binuclear Rhodium and Ruthenium Complexes with 1,8-Naphthyridine-2,7-dicarboxylate. X-ray Molecular Structure of Tris(μ-acetato)(1,8-naphthyridine-2,7-dicarboxylato)diruthenium. Inorg. Chem. 1990, 29, 2238–2241. 10.1021/ic00337a012. - DOI
- He C.; Barrios A. M.; Lee D.; Kuzelka J.; Daavydov R. M.; Lippard S. J. Diiron Complexes of 1,8-Naphthyridine-Based Dinucleating Ligands as Models for Hemerythrin. J. Am. Chem. Soc. 2000, 122, 12683–12690. 10.1021/ja0026861. - DOI
- He C.; Dubois J. L.; Hedman B.; Hodgson K. O.; Lippard S. J. A Short Copper–Copper Distance in a (μ-1,2-Peroxo)dicopper(II) Complex Having a 1,8-Naphthyridine Unit as an Additional Bridge. Angew. Chem., Int. Ed. 2001, 40, 1484–1487. 10.1002/1521-3773(20010417)40:8<1484::AID-ANIE1484>3.0.CO;2-Z. - DOI - PubMed
- Bera J. K.; Sadhukhanb N.; Majumdar M. 1,8-Naphthyridine Revisited: Applications in Dimetal Chemistry. Eur. J. Inorg. Chem. 2009, 2009, 4023–4038. 10.1002/ejic.200900312. - DOI
- Kounalis E.; Lutz M.; Broere D. L. J. Cooperative H2 Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an “Expanded PNNP Pincer” Ligand. Chem. - Eur. J. 2019, 25, 13280–13284. 10.1002/chem.201903724. - DOI - PMC - PubMed
- Delaney A. R.; Yu L.-J.; Coote M. L.; Colebatch A. L. Synthesis of an expanded pincer ligand and its bimetallic coinage metal complexes. Dalton Trans. 2021, 50, 11909–11917. 10.1039/D1DT01741A. - DOI - PubMed
-
LinkOut - more resources
Full Text Sources