Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 1;94(10):103007.
doi: 10.1063/5.0166156.

Picosecond pulsed 532 nm laser system for roughening and secondary electron yield reduction of inner surfaces of up to 15 m long tubes

Affiliations

Picosecond pulsed 532 nm laser system for roughening and secondary electron yield reduction of inner surfaces of up to 15 m long tubes

Elena Bez et al. Rev Sci Instrum. .

Abstract

Laser-induced surface structuring is a promising method to suppress electron mulitpacting in the vacuum pipes of particle accelerators. Electrons are scattered inside the rough surface structure, resulting in a low Secondary Electron Yield (SEY) of the material. However, laser processing of internal pipe surfaces with a large aspect ratio is technologically challenging in terms of laser beam guidance and focusing. We present a 532 nm ultrashort-pulse laser setup to process the inner parts of 15 m long beam vacuum tubes of the Large Hadron Collider (LHC). Picosecond pulses at a repetition rate of 200 kHz are guided through an optical fiber toward an inchworm robot traveling inside the beam pipe. The system was installed, characterized, and tested for reliability. First surface treatments achieved the required scan precision. Cu2O-dominated nano-features were observed when processing at high average laser power (5 W) and slow scanning speed (5 mm s-1) in nitrogen flow, and the maximum SEY of copper was decreased from 2.1 to 0.7.

PubMed Disclaimer

LinkOut - more resources