Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology
- PMID: 37813050
- DOI: 10.1016/j.ejmp.2023.103156
Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology
Abstract
Purpose: Atlas-based and deep-learning contouring (DLC) are methods for automatic segmentation of organs-at-risk (OARs). The European Particle Therapy Network (EPTN) published a consensus-based atlas for delineation of OARs in neuro-oncology. In this study, geometric and dosimetric evaluation of automatically-segmented neuro-oncological OARs was performed using CT- and MR-models following the EPTN-contouring atlas.
Methods: Image and contouring data from 76 neuro-oncological patients were included. Two atlas-based models (CT-atlas and MR-atlas) and one DLC-model (MR-DLC) were created. Manual contours on registered CT-MR-images were used as ground-truth. Results were analyzed in terms of geometrical (volumetric Dice similarity coefficient (vDSC), surface DSC (sDSC), added path length (APL), and mean slice-wise Hausdorff distance (MSHD)) and dosimetrical accuracy. Distance-to-tumor analysis was performed to analyze to which extent the location of the OAR relative to planning target volume (PTV) has dosimetric impact, using Wilcoxon rank-sum tests.
Results: CT-atlas outperformed MR-atlas for 22/26 OARs. MR-DLC outperformed MR-atlas for all OARs. Highest median (95 %CI) vDSC and sDSC were found for the brainstem in MR-DLC: 0.92 (0.88-0.95) and 0.84 (0.77-0.89) respectively, as well as lowest MSHD: 0.27 (0.22-0.39)cm. Median dose differences (ΔD) were within ± 1 Gy for 24/26(92 %) OARs for all three models. Distance-to-tumor showed a significant correlation for ΔDmax,0.03cc-parameters when splitting the data in ≤ 4 cm and > 4 cm OAR-distance (p < 0.001).
Conclusion: MR-based DLC and CT-based atlas-contouring enable high-quality segmentation. It was shown that a combination of both CT- and MR-autocontouring models results in the best quality.
Keywords: Automatic contouring; Deep-learning contouring; Neuro-oncology; Radiotherapy.
Copyright © 2023 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical