Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024;25(2):107-119.
doi: 10.2174/0113892037261763230925034348.

Plant bZIP Proteins: Potential use in Agriculture - A Review

Affiliations
Review

Plant bZIP Proteins: Potential use in Agriculture - A Review

Cláudia Regina Batista de Souza et al. Curr Protein Pept Sci. 2024.

Abstract

With global climate changes and the increased demand for food due to expected world population growth, genetic improvement programs have aimed at producing crops with increased yield and tolerance to environmental stresses, such as drought, salinity, and pathogens. On the other hand, genetic improvement programs via biotechnology require candidate genes that confer traits of interest to be incorporated into improved crops. In this regard, genes encoding transcription factors (TFs) can be promising since they are proteins that transcriptionally regulate the expression of target genes related to the most diverse roles in the plant, including defense against stresses. Among TFs, bZIP (basic leucine zipper) proteins regulate many developmental and physiological processes in the plant, such as seed formation, fruit ripening, nutrient assimilation, and defense response to abiotic and biotic stresses. In this review, we aim to highlight the main advances in the potential use of bZIP TFs in the genetic improvement of crops. We address this potential mainly regarding crop tolerance to stresses and other agricultural traits, such as increased yield and fruit features.

Keywords: Biotechnology; drought; environmental stresses; phytopathogens; plant defense; regulatory proteins; salinity.; transcription factors.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources