Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr;108(4):1041-1052.
doi: 10.1094/PDIS-03-23-0403-RE. Epub 2024 Apr 21.

Role of Rain in the Spore Dispersal of Fungal Pathogens Associated with Grapevine Trunk Diseases

Affiliations

Role of Rain in the Spore Dispersal of Fungal Pathogens Associated with Grapevine Trunk Diseases

Tao Ji et al. Plant Dis. 2024 Apr.

Abstract

Grapevine trunk diseases are caused by a complex of fungi that belong to different taxa, which produce different spore types and have different spore dispersal mechanisms. It is commonly accepted that rainfall plays a key role in spore dispersal, but there is conflicting information in the literature on the relationship between rain and spore trapping in aerobiology studies. We conducted a systematic literature review, extracted quantitative data from published papers, and used the pooled data for Bayesian analysis of the effect of rain on spore trapping. We selected 17 papers covering 95 studies and 8,778 trapping periods, concerning a total of 26 fungal taxa causing Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). Results confirmed the role of rain in the spore dispersal of these fungi but revealed differences among the different fungi. Rain was a good predictor of spore trapping for ED (AUROC = 0.820) and BD (0.766) but not for the ascomycetes involved in EC (0.569) and not for the only basidiomycetes, Fomitiporella viticola, studied as for spore discharge (AUROC not significant). Prediction of spore trapping was more accurate for negative prognosis than for positive prognosis; a rain cutoff of ≥0.2 mm provided an overall accuracy of ≥0.61 for correct prognoses. Spores trapped in rainless periods accounted for only <10% of the total spores. Our analysis had some drawbacks, which were mainly caused by knowledge gaps and limited data availability; these drawbacks are discussed to facilitate further research.

Keywords: Bayesian analysis; grapevine trunk diseases; rain threshold; spore sampling.

PubMed Disclaimer

Conflict of interest statement

The author(s) declare no conflict of interest.

Publication types

LinkOut - more resources