Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 3;88(21):15461-15465.
doi: 10.1021/acs.joc.3c01513. Epub 2023 Oct 12.

Green Oxidation of Heterocyclic Ketones with Oxone in Water

Affiliations

Green Oxidation of Heterocyclic Ketones with Oxone in Water

Alessandro Giraudo et al. J Org Chem. .

Abstract

The recently reported efficient conversion of cyclic ketones to lactones by Oxone in neutral buffered water is extended to heterocyclic ketones, namely, cyclic N-Boc azaketones and oxoethers with the aim of obtaining N-protected azalactones and their analogues with oxygen in place of nitrogen. N-Boc-4-piperidinone and all the cyclic oxoethers were successfully oxidized to lactones, while the azacyclic ketones with nitrogen α-positioned to carbonyl were univocally transformed into N-Boc-ω-amino acids and N-Boc-N-formyl-ω-amino acids operating in alkaline water and DMF, respectively.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Heterocyclic ketones submitted to oxidation with Oxone.
Figure 2
Figure 2
Lactones that may be obtained in principle by the oxidative ring expansion of 18. In red, those reported in the literature as BV oxidation products of 4, 7, and 8; in blue, those reported in the literature as resultant from other preparative procedures; and in black, those not described.
Scheme 1
Scheme 1. Oxidations of N-Boc Azacyclic Ketones 1-4 with Oxone
General reaction conditions: (a) ketone (1 mmol), Oxone (8 mmol), 2 M NaH2PO4/Na2HPO4 water solution (pH = 7) (14 mL), room temperature, 24 h; (b) ketone (1 mmol), Oxone (2 mmol), 1 M NaOH (8 mL), room temperature, 30 min; (c) ketone (1 mmol), Oxone (2 mmol), DMF (5–9 mL), room temperature (3 and 2) or 60 °C (1), 1 h (3) or 16 h (2) or 5 h (1); (d) (1) ketone (1 mmol), Oxone (2 mmol), 2 M NaH2PO4/Na2HPO4 water solution (pH = 7) (9 mL), room temperature, 2 h, and (2) 1 M NaOH (9 mL), room temperature, 30 min.
Scheme 2
Scheme 2. Oxidations of Cyclic Oxo-ethers 58 with Oxone
General reaction conditions: (a) ketone (1 mmol), Oxone (4 mmol), 1 M NaH2PO4/Na2HPO4 water solution (pH = 7) (4 mL), room temperature, 40 min; (b) ketone (1 mmol), Oxone (2 mmol), 2 M NaH2PO4/Na2HPO4 water solution (pH = 7) (4 mL), 0 °C, 10 min (7 and 6) or 3 min (5).

References

    1. Sharley J. S.; Gambacorta G.; Collado Perez A. M.; Ferri E. E.; Miranda A. F.; Fernandez I. F.; Quesada J. S.; Baxendale I. R. A simple one-pot oxidation protocol for the synthesis of dehydrohedione from Hedione. Tetrahedron 2022, 126, 133068.10.1016/j.tet.2022.133068. - DOI
    2. Feng Y.; Chang B.; Ren Y.; Zhao F.; Wang K. H.; Wang J.; Huang D.; Lv X.; Hu Y. Synthesis of trifluoromethyl pyrrolopyrazole derivatives via [3 + 2] cycloaddition of trifluoromethyl N-acylhydrazones or trifluoroacetohydrazonoyl bromides with maleimides. Tetrahedron 2023, 136, 133353.10.1016/j.tet.2023.133353. - DOI
    3. Bolchi C.; Valoti E.; Straniero V.; Ruggeri P.; Pallavicini M. From 2-aminomethyl-1,4-benzodioxane enantiomers to unichiral 2-cyano- and 2-carbonyl-substituted benzodioxanes via dichloroamine. J. Org. Chem. 2014, 79, 6732.10.1021/jo500964y. - DOI - PubMed
    4. Pallavicini M.; Bolchi C.; Fumagalli L.; Piccolo O.; Valoti E. Highly efficient racemization of a key intermediate of the antibiotic moxifloxacin. Tetrahedron Asymmetry 2011, 22, 379.10.1016/j.tetasy.2011.02.007. - DOI
    5. Kraemer Y.; Bergman E. N.; Togni A.; Pitts C. R. Oxidative fluorination of heteroatoms enabled by trichloroisocyanuric acid and potassium fluoride. Angew. Chem., Int. Ed. 2022, 61, e20220508810.1002/anie.202205088. - DOI - PMC - PubMed
    1. Dorado V.; Herrerias C. I.; Fraile J. M. Simple metal-free oxidative cleavage of 1,2-diols. Tetrahedron 2023, 139, 133450.10.1016/j.tet.2023.133450. - DOI
    2. Zhang M. Z.; Wang P.; Liu H. Y.; Wang D.; Deng Y.; Bai Y. D.; Luo F.; Wu W. Y.; Chen T. Metal-catalyst-free one-pot aqueous synthesis of trans-1,2-diols from electron-deficient α,β-unsaturated amides via epoxidation using oxone as a dual role reagent. ChemSusChem 2023, 16, e20230058310.1002/cssc.202300583. - DOI - PubMed
    3. Alvi S.; Jayant V.; Ali R. Applications of oxone in organic synthesis: an emerging green reagent of modern era. ChemistrySelect 2022, 7, e20220070410.1002/slct.202200704. - DOI
    1. Xu J.; Liang L.; Zheng H.; Chi Y. R.; Tong R. Green oxidation of indoles using halide catalysis. Nat. Commun. 2019, 10, 4754.10.1038/s41467-019-12768-4. - DOI - PMC - PubMed
    2. Sathish M.; Sakla A. P.; Nachtigall F. M.; Santos L. S.; Shankaraiah N. TCCA-mediated oxidative rearrangement of tetrahydro-β-carbolines: facile access to spirooxindoles and the total synthesis of (±)-coerulescine and (±)-horsfiline. RSC Adv. 2021, 11, 16537.10.1039/D1RA02381K. - DOI - PMC - PubMed
    1. Blödorn G. B.; Duarte L. F. B.; Roehrs J. A.; Silva M. S.; Neto J. S. S.; Alves D. Trichloroisocyanuric acid (TCCA): a suitable reagent for the synthesis of selanyl-benzo[b]chalcogenophenes. Eur. J. Org. Chem. 2022, 2022, e20220077510.1002/ejoc.202200775. - DOI
    1. Bertolini V.; Appiani R.; Pallavicini M.; Bolchi C. Green oxidation of ketones to lactones with oxone in water. J. Org. Chem. 2021, 86, 15712.10.1021/acs.joc.1c01469. - DOI - PubMed