Noninvasive Treatment of Alzheimer's Disease with Scintillating Nanotubes
- PMID: 37826854
- PMCID: PMC11469333
- DOI: 10.1002/adhm.202301527
Noninvasive Treatment of Alzheimer's Disease with Scintillating Nanotubes
Abstract
Effective and accessible treatments for Alzheimer's disease (AD) are urgently needed. Soluble Aβ oligomers are identified as neurotoxic species in AD and targeted in antibody-based drug development to mitigate cognitive decline. However, controversy exists concerning their efficacy and safety. In this study, an alternative strategy is proposed to inhibit the formation of Aβ oligomers by selectively oxidizing specific amino acids in the Aβ sequence, thereby preventing its aggregation. Targeted oxidation is achieved using biocompatible and blood-brain barrier-permeable multicomponent nanoscintillators that generate singlet oxygen upon X-ray interaction. Surface-modified scintillators interact selectively with Aβ and, upon X-ray irradiation, inhibit the formation of neurotoxic aggregates both in vitro and in vivo. Feeding transgenic Caenorhabditis elegans expressing human Aβ with the nanoscintillators and subsequent irradiation with soft X-ray reduces Aβ oligomer levels, extends lifespan, and restores memory and behavioral deficits. These findings support the potential of X-ray-based therapy for AD and warrant further development.
Keywords: Alzheimer's disease; Aβ amyloids; X-rays; hybrid materials; nanoscintillators; singlet oxygen.
© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
Conflict of interest statement
There is a patent associated with the work in this article, patent application no. 102023000022626, IT0842‐23‐PA103305IT01 ‐ Università degli Studi Milano Bicocca‐ HS.
Figures




References
-
- Karran E., Mercken M., Strooper B. D., Nat. Rev. Drug Discovery 2011, 10, 698. - PubMed
-
- a) Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., Morgan T. E., Rozovsky I., Trommer B., Viola K. L., Wals P., Zhang C., Finch C. E., Krafft G. A., Klein W. L., Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6448; - PMC - PubMed
- b) Fändrich M., J. Mol. Biol. 2012, 421, 427; - PubMed
- c) Hyman J. M., Firestone A. J., Heine V. M., Zhao Y., Ocasio C. A., Han K., Sun M., Rack P. G., Sinha S., Wu J. J., Solow‐Cordero D. E., Jiang J., Rowitch D. H., Chen J. K., Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 14132; - PMC - PubMed
- d) Cline E. N., Bicca M. A., Viola K. L., Klein W. L., J. Alzheimers Dis. 2018, 64, S567. - PMC - PubMed
-
- a) Sevigny J., Chiao P., Bussière T., Weinreb P. H., Williams L., Maier M., Dunstan R., Salloway S., Chen T., Ling Y., O'Gorman J., Qian F., Arastu M., Li M., Chollate S., Brennan M. S., Quintero‐Monzon O., Scannevin R. H., Arnold H. M., Engber T., Rhodes K., Ferrero J., Hang Y., Mikulskis A., Grimm J., Hock C., Nitsch R. M., Sandrock A., Nature 2016, 537, 50; - PubMed
- b) Panza F., Lozupone M., Dibello V., Greco A., Daniele A., Seripa D., Logroscino G., Imbimbo B. P., Immunotherapy 2019, 11, 3. - PubMed
-
- a) Reiman E. M., Nature 2023, 615, 42; - PubMed
- b) van Dyck C. H., Swanson C. J., Aisen P., Bateman R. J., Chen C., Gee M., Kanekiyo M., Li D., Reyderman L., Cohen S., Froelich L., Katayama S., Sabbagh M., Vellas B., Watson D., Dhadda S., Irizarry M., Kramer L. D., Iwatsubo T., N. Engl. J. Med. 2022, 388, 9. - PubMed
-
- a) Li C., Wang J., Liu L., Front. Chem. 2020, 8, 509; - PMC - PubMed
- b) Leshem G., Richman M., Lisniansky E., Antman‐Passig M., Habashi M., Gräslund A., Wärmländer S. K. T. S., Rahimipour S., Chem. Sci. 2019, 10, 208; - PMC - PubMed
- c) Hirabayashi A., Shindo Y., Oka K., Takahashi D., Toshima K., Chem. Commun. 2014, 50, 9543; - PubMed
- d) Ishida Y., Fujii T., Oka K., Takahashi D., Toshima K., Chem. Asian J. 2011, 6, 2312; - PubMed
- e) Taniguchi A., Shimizu Y., Oisaki K., Sohma Y., Kanai M., Nat. Chem. 2016, 8, 974. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources