Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct:203:108077.
doi: 10.1016/j.plaphy.2023.108077. Epub 2023 Oct 6.

Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity

Affiliations

Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity

Mohamed Abdel-Mawgoud et al. Plant Physiol Biochem. 2023 Oct.

Abstract

Thallium (TI) is a toxic metal that can trigger harmful impacts on growth and metabolism of plants. Utilizing arbuscular mycorrhizal fungi (AMF) proves to be an effective strategy for alleviating heavy metal toxicity in plants. To this end, AMF were applied to mitigate TI toxic effects on the growth, primary and secondary metabolism of soybean plants. Here, TI stress inhibited the growth and photosynthetic parameters of soybean plants. It also increased the oxidative damage as demonstrated by increased levels of oxidative markers, (MDA and lipoxygenase (LOX) activity). However, AMF could mitigate the reduction in growth and photosynthesis induced by TI, as well as the induction of oxidative damage. To overcome TI toxicity, AMF increased the levels and metabolism of osmolytes such as proline in soybean plants. This was in line with the increased activities of key enzymes that involved in proline biosynthesis (e.g., P5CS (pyrroline-5-carboxylate synthetase), P5CR (pyrroline-5-carboxylate reductase) and OAT (ornithine aminotransferase) under the AMF and/or TI treatments. Furthermore, soybean plants could benefit from the synergism between AMF and TI to enhance the contents of individual (e.g., spermine and spermidine) and total polyamines as well as their metabolic enzymes (e.g., arginine decarboxylase and ornithine decarboxylase). Overall, the combined application of AMF emerges as a viable approach for alleviating TI toxicity in soybean plants.

Keywords: Arbuscular mycorrhizal fungi; Mineral balance; Polyamines; Proline metabolism; Sucrose metabolism; Thallium.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources