Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep 14;14(39):10971-10978.
doi: 10.1039/d3sc03987k. eCollection 2023 Oct 11.

Rh(iii)-catalyzed highly site- and regio-selective alkenyl C-H activation/annulation of 4-amino-2-quinolones with alkynes via reversible alkyne insertion

Affiliations

Rh(iii)-catalyzed highly site- and regio-selective alkenyl C-H activation/annulation of 4-amino-2-quinolones with alkynes via reversible alkyne insertion

Naohiro Hirako et al. Chem Sci. .

Abstract

3,4-Fused 2-quinolone frameworks are important structural motifs found in natural products and biologically active compounds. Intermolecular alkenyl C-H activation/annulation of 4-amino-2-quinolone substrates with alkynes is one of the most efficient methods for accessing such structural motifs. However, this is a formidable challenge because 4-amino-2-quinolones have two cleavable C-H bonds: an alkenyl C-H bond at the C3-position and an aromatic C-H bond at the C5-position. Herein, we report the Rh(iii)-catalyzed highly site-selective alkenyl C-H functionalization of 4-amino-2-quinolones to afford 3,4-fused 2-quinolones. This method has a wide substrate scope, including unsymmetrical internal alkynes, with complete regioselectivity. Several control experiments using an isolated key intermediate analog suggested that the annulation reaction proceeds via reversible alkyne insertion involving a binuclear Rh complex although alkyne insertion is generally recognized as an irreversible process due to the high activation barrier of the reverse process.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Site-selective C–H functionalization of aromatic compounds with two cleavable C–H bonds.
Scheme 2
Scheme 2. Substrate scope.
Scheme 3
Scheme 3. Analysis of hydrogen/deuterium exchange.
Fig. 1
Fig. 1. Temperature-dependence of the reaction. aYields are determined by 1H NMR. Isolated yields are shown in parentheses.
Fig. 2
Fig. 2. Mechanistic study involving rhodacycle intermediates.
Scheme 4
Scheme 4. Proposed reaction mechanism.

References

    1. For recent reviews, see:

    2. Zhu R. Farmer M. E. Chen Y. Yu J. Angew. Chem., Int. Ed. 2016;55:10578–10599. doi: 10.1002/anie.201600791. - DOI - PMC - PubMed
    3. Brandhofer T. García Mancheño O. Eur. J. Org Chem. 2018;2018:6050–6067. doi: 10.1002/ejoc.201800896. - DOI
    4. Baccalini A. Faita G. Zanoni G. Maiti D. Chem. - Eur. J. 2020;26:9749–9783. doi: 10.1002/chem.202001832. - DOI - PubMed
    5. Baudoin O. Angew. Chem., Int. Ed. 2020;59:17798–17809. doi: 10.1002/anie.202001224. - DOI - PubMed
    6. Zhang Y. Szostak M. Chem. - Eur. J. 2022;28:e202104278. doi: 10.1002/chem.202104278. - DOI - PMC - PubMed
    1. For selected reviews, see:

    2. He R. Huang Z.-T. Zheng Q.-Y. Wang C. Tetrahedron Lett. 2014;55:5705–5713. doi: 10.1016/j.tetlet.2014.08.077. - DOI
    3. Cui X. Mo J. Wang L. Liu Y. Synthesis. 2015;47:439–459. doi: 10.1055/s-0034-1379890. - DOI
    4. Gandeepan P. Cheng C.-H. Chem.–Asian J. 2016;11:448–460. doi: 10.1002/asia.201501186. - DOI - PubMed
    5. Yang Y. Li K. Cheng Y. Wan D. Li M. You J. Chem. Commun. 2016;52:2872–2884. doi: 10.1039/C5CC09180B. - DOI - PubMed
    6. Peneau A. Guillou C. Chabaud L. Eur. J. Org Chem. 2018;2018:5777–5794. doi: 10.1002/ejoc.201800298. - DOI - PubMed
    7. Wang C. Chen F. Qian P. Cheng J. Org. Biomol. Chem. 2021;19:1705–1721. doi: 10.1039/D0OB02377A. - DOI - PubMed
    8. Saha A. Shankar M. Sau S. Sahoo A. K. Chem. Commun. 2022;58:4561–4587. doi: 10.1039/D2CC00172A. - DOI - PubMed
    1. Martínez Á. M. Echavarren J. Alonso I. Rodríguez N. Arrayás R. G. Carretero J. C. Chem. Sci. 2015;6:5802–5814. doi: 10.1039/C5SC01885D. - DOI - PMC - PubMed
    2. Elumalai K. Leong W. K. Tetrahedron Lett. 2018;59:113. doi: 10.1016/j.tetlet.2017.11.058. - DOI
    3. Pabst T. P. Obligacion J. V. Rochette É. Pappas I. Chirik P. J. J. Am. Chem. Soc. 2019;141:15378–15389. doi: 10.1021/jacs.9b07984. - DOI - PMC - PubMed
    4. Alharis R. A. Mcmullin C. L. Davies D. L. Singh K. Macgregor S. A. J. Am. Chem. Soc. 2019;141:8896–8906. doi: 10.1021/jacs.9b02073. - DOI - PubMed
    5. Prim D. Large B. Synthesis. 2020;52:2600–2612. doi: 10.1055/s-0040-1707855. - DOI
    1. Zhang X. Si W. Bao M. Asao N. Yamamoto Y. Jin T. Org. Lett. 2014;16:4830–4833. doi: 10.1021/ol502317c. - DOI - PubMed
    1. Bedford R. B. Durrant S. J. Montgomery M. Angew. Chem., Int. Ed. 2015;54:8787–8790. doi: 10.1002/anie.201502150. - DOI - PMC - PubMed
    2. Leitch J. A. Bhonoah Y. Frost C. G. ACS Catal. 2017;7:5618–5627. doi: 10.1021/acscatal.7b01785. - DOI
    3. Kang D. Ahn K. Hong S. Asian J. Org. Chem. 2018;7:1136–1150. doi: 10.1002/ajoc.201800128. - DOI
    4. Biswas A. Maity S. Pan S. Samanta R. Chem.–Asian J. 2020;15:2092–2109. doi: 10.1002/asia.202000506. - DOI - PubMed
    5. Corio A. Gravier-Pelletier C. Busca P. Molecules. 2021;26:5467. doi: 10.3390/molecules26185467. - DOI - PMC - PubMed
    6. Yamamoto Y. in Handbook of CH-Functionalization, ed. D. Maiti, Wiley, 2022