Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:110:102303.
doi: 10.1016/j.compmedimag.2023.102303. Epub 2023 Sep 30.

Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer's disease

Affiliations

Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer's disease

Xingyu Gao et al. Comput Med Imaging Graph. 2023 Dec.

Abstract

Multimodal images such as magnetic resonance imaging (MRI) and positron emission tomography (PET) could provide complementary information about the brain and have been widely investigated for the diagnosis of neurodegenerative disorders such as Alzheimer's disease (AD). However, multimodal brain images are often incomplete in clinical practice. It is still challenging to make use of multimodality for disease diagnosis with missing data. In this paper, we propose a deep learning framework with the multi-level guided generative adversarial network (MLG-GAN) and multimodal transformer (Mul-T) for incomplete image generation and disease classification, respectively. First, MLG-GAN is proposed to generate the missing data, guided by multi-level information from voxels, features, and tasks. In addition to voxel-level supervision and task-level constraint, a feature-level auto-regression branch is proposed to embed the features of target images for an accurate generation. With the complete multimodal images, we propose a Mul-T network for disease diagnosis, which can not only combine the global and local features but also model the latent interactions and correlations from one modality to another with the cross-modal attention mechanism. Comprehensive experiments on three independent datasets (i.e., ADNI-1, ADNI-2, and OASIS-3) show that the proposed method achieves superior performance in the tasks of image generation and disease diagnosis compared to state-of-the-art methods.

Keywords: Disease diagnosis; Generative adversarial network; Image generation; Multimodal brain images; Transformer.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources