Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:189:109948.
doi: 10.1016/j.radonc.2023.109948. Epub 2023 Oct 11.

Ultra-fast multi-parametric 4D-MRI image reconstruction for real-time applications using a downsampling-invariant deformable registration (D2R) model

Affiliations

Ultra-fast multi-parametric 4D-MRI image reconstruction for real-time applications using a downsampling-invariant deformable registration (D2R) model

Haonan Xiao et al. Radiother Oncol. 2023 Dec.

Abstract

Background and purpose: Motion estimation from severely downsampled 4D-MRI is essential for real-time imaging and tumor tracking. This simulation study developed a novel deep learning model for simultaneous MR image reconstruction and motion estimation, named the Downsampling-Invariant Deformable Registration (D2R) model.

Materials and methods: Forty-three patients undergoing radiotherapy for liver tumors were recruited for model training and internal validation. Five prospective patients from another center were recruited for external validation. Patients received 4D-MRI scans and 3D MRI scans. The 4D-MRI was retrospectively down-sampled to simulate real-time acquisition. Motion estimation was performed using the proposed D2R model. The accuracy and robustness of the proposed D2R model and baseline methods, including Demons, Elastix, the parametric total variation (pTV) algorithm, and VoxelMorph, were compared. High-quality (HQ) 4D-MR images were also constructed using the D2R model for real-time imaging feasibility verification. The image quality and motion accuracy of the constructed HQ 4D-MRI were evaluated.

Results: The D2R model showed significantly superior and robust registration performance than all the baseline methods at downsampling factors up to 500. HQ T1-weighted and T2-weighted 4D-MR images were also successfully constructed with significantly improved image quality, sub-voxel level motion error, and real-time efficiency. External validation demonstrated the robustness and generalizability of the technique.

Conclusion: In this study, we developed a novel D2R model for deformation estimation of downsampled 4D-MR images. HQ 4D-MR images were successfully constructed using the D2R model. This model may expand the clinical implementation of 4D-MRI for real-time motion management during liver cancer treatment.

Keywords: 4D-MRI; Deep learning; Deformable image registration; Motion management; Real-time.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources