Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Oct;159(4):441-56.
doi: 10.1007/BF00604164.

Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song

Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song

T G Nolen et al. J Comp Physiol A. 1986 Oct.

Abstract

The effects of two-tone stimuli on the high frequency bat-avoidance steering behavior of flying crickets (Teleogryllus oceanicus) were studied during tethered flight. Similarly, the effects of two-tone stimuli on the ultrasound sensitive auditory interneuron, Int-1, which elicits this behavior, were studied using intracellular staining and recording techniques. When a low frequency tone (3-8 kHz) was presented simultaneously with an aversive high frequency tone (in a two-tone stimulus paradigm), the high frequency avoidance steering behavior was suppressed. Suppression was optimal when the low frequency tone was between 4 and 5 kHz and about 10-15 dB louder than the high frequency tone (Figs. 2, 3). Best suppression occurred when the low frequency tone-pulse just preceded or overlapped the high frequency tone-pulse, indicating that the suppressive effects of 5 kHz could last for up to 70 ms (Fig. 4). The threshold for avoidance of the bat-like stimulus was elevated when model bat biosonar (30 kHz) was presented while the animal was performing positive phonotaxis toward 5 kHz model calling song, but only if the calling song intensity was relatively high (greater than 70-80 dB SPL) (Fig. 1). However, avoidance steering could always be elicited as long as the calling song was not more than 10 dB louder than the ultrasound (Fig. 1). This suppressive effect did not require performance of positive phonotaxis to the calling song (Fig. 2) and was probably due to the persistence of the suppressive effects of the 5 kHz model calling song (Fig. 4). The requirement for relatively high intensities of calling song suggest that the suppression of bat-avoidance by the calling song is not likely to be of great significance in nature. The high frequency harmonics of the male cricket's natural calling song overlap the lower frequency range used by insectivorous bats (10-20 kHz) and are loud enough to elicit avoidance behavior in a flying female as she closely approaches a singing male (Fig. 5). The high frequency 'harmonics' of a model calling song were aversive even if presented with a normally attractive temporal pattern (pulse repetition rate of 16 pps) (Fig. 6A). When the 5 kHz 'fundamental' was added to one of the high frequency 'harmonics', in a two-tone stimulus paradigm, this complex model calling song was attractive; the high frequency 'harmonic' no longer elicited the avoidance behavior (Fig. 6) and the animals steered toward the model CS. Thus, addition of 5 kHz to a high frequency harmonic of the calling song 'masked' the aversive nature of this stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Comp Physiol A. 1986 Oct;159(4):423-39 - PubMed
    1. J Neurosci. 1987 Jul;7(7):2081-96 - PubMed
    1. Science. 1979 Apr 27;204(4391):429-32 - PubMed
    1. Science. 1980 Oct 24;210(4468):443-5 - PubMed
    1. J Neurophysiol. 1985 May;53(5):1201-18 - PubMed

Publication types

LinkOut - more resources